ARYABHATTA KNOWLEDGE UNIVERSITY
Patna, Bihar

Bachelor of Technology (B.Tech.) Program

INCLUDES

- Program
- Course Structure
- Detailed Syllabus
CONTENTS

BASICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE</td>
<td>1</td>
</tr>
<tr>
<td>COMMON CURRICULA</td>
<td>8</td>
</tr>
<tr>
<td>B.TECH 1<sup>ST</sup> AND 2<sup>ND</sup> SEMESTER – FOUR YEAR PROGRAMME</td>
<td>9</td>
</tr>
<tr>
<td>COURSE STRUCTURE FOR B.TECH PROGRAMME</td>
<td>10</td>
</tr>
<tr>
<td>BACHELOR OF TECHNOLOGY IN CIVIL ENGINEERING</td>
<td>10</td>
</tr>
<tr>
<td>BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING</td>
<td>13</td>
</tr>
<tr>
<td>BACHELOR OF TECHNOLOGY IN ELECTRICAL ENGINEERING</td>
<td>15</td>
</tr>
<tr>
<td>BACHELOR OF TECHNOLOGY IN ELECTRONICS & COMMUNICATION ENGINEERING</td>
<td>17</td>
</tr>
<tr>
<td>BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING</td>
<td>19</td>
</tr>
<tr>
<td>BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOGY</td>
<td>22</td>
</tr>
<tr>
<td>BACHELOR OF TECHNOLOGY IN ELECTRICAL & ELECTRONICS ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>BACHELOR OF TECHNOLOGY IN LEATHER TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>BACHELOR OF PHARMACEUTICAL SCIENCE</td>
<td></td>
</tr>
<tr>
<td>BACHELOR OF DAIRY TECHNOLOGY</td>
<td></td>
</tr>
</tbody>
</table>

DISTRIBUTION OF MARKS FOR EVALUATION OF DIFFERENT COMPONENTS BASED ON L-T-P (EXCEPT SEMINAR & PROJECT)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTMENT OF MATHEMATICS</td>
<td>25</td>
</tr>
<tr>
<td>21 1x01 MATHEMATICS – I</td>
<td>25</td>
</tr>
<tr>
<td>21 1x02 MATHEMATICS – II</td>
<td>25</td>
</tr>
<tr>
<td>21 1x03 MATHEMATICS – III</td>
<td>26</td>
</tr>
<tr>
<td>21 1x04 NUMERICAL METHOD & COMPUTATIONAL TECHNIQUE</td>
<td>27</td>
</tr>
<tr>
<td>21 1x05 DISCRETE MATHEMATICAL STRUCTURE & GRAPH THEORY</td>
<td>27</td>
</tr>
</tbody>
</table>

DEPARTMENT OF PHYSICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 1x01 ENGINEERING PHYSICS</td>
<td>28</td>
</tr>
</tbody>
</table>

DEPARTMENT OF CHEMISTRY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 1x01 ENGINEERING CHEMISTRY</td>
<td>29</td>
</tr>
</tbody>
</table>

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 1x01 ORGANIZATIONAL BEHAVIOR & INDUSTRIAL PSYCHOLOGY</td>
<td>30</td>
</tr>
<tr>
<td>24 1x02 PERSONAL MANAGEMENT & INDUSTRIAL RELATION</td>
<td>30</td>
</tr>
<tr>
<td>24 1x03 SOCIOLOGY AND BUILDING ECONOMICS</td>
<td>31</td>
</tr>
<tr>
<td>24 1x04 ENGINEERING ECONOMICS AND MANAGEMENT</td>
<td>32</td>
</tr>
<tr>
<td>24 1x05 COMMUNICATIVE ENGLISH</td>
<td>33</td>
</tr>
<tr>
<td>24 1x06 INDUSTRIAL ECONOMICS AND ACCOUNTING</td>
<td>33</td>
</tr>
<tr>
<td>24 1x07 SUSTAINABLE DEVELOPMENT</td>
<td>33</td>
</tr>
</tbody>
</table>

DEPARTMENT OF CIVIL ENGINEERING

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 1x01 ENGINEERING MECHANICS</td>
<td>34</td>
</tr>
<tr>
<td>01 1x02 ENVIRONMENTAL SCIENCES</td>
<td>34</td>
</tr>
<tr>
<td>01 1x03 BUILDING SCIENCE</td>
<td>35</td>
</tr>
<tr>
<td>01 1x04 FIELD MEASUREMENT</td>
<td>35</td>
</tr>
<tr>
<td>01 1x05 ENGINEERING GEOLOGY</td>
<td>36</td>
</tr>
<tr>
<td>01 1x06 MECHANICS OF SOLID-I</td>
<td>37</td>
</tr>
<tr>
<td>01 1x07 FLUID MECHANICS</td>
<td>37</td>
</tr>
<tr>
<td>01 1x08 ADVANCED SURVEYING</td>
<td>38</td>
</tr>
<tr>
<td>01 1x09 SOIL MECHANICS – I</td>
<td>39</td>
</tr>
<tr>
<td>01 1x10 HYDRAULICS & OPEN CHANNEL FLOW</td>
<td>39</td>
</tr>
<tr>
<td>01 1x11 STRUCTURAL ANALYSIS-I</td>
<td>40</td>
</tr>
<tr>
<td>01 1x12 ENGINEERING HYDROLOGY</td>
<td>40</td>
</tr>
<tr>
<td>01 1x13 MECHANICS OF SOLID-II</td>
<td>41</td>
</tr>
<tr>
<td>01 1x14 CIVIL ENGINEERING DRAWING</td>
<td>41</td>
</tr>
<tr>
<td>01 1x15 SOIL MECHANICS & ROCK MECHANICS</td>
<td>42</td>
</tr>
<tr>
<td>01 1x16 STRUCTURAL ANALYSIS –II</td>
<td>42</td>
</tr>
<tr>
<td>01 1x17 DESIGN OF CONCRETE STRUCTURE-I</td>
<td>44</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>01 1x18</td>
<td>ENVIRONMENTAL ENGINEERING – I</td>
</tr>
<tr>
<td>01 1x19</td>
<td>TRANSPORTATION ENGINEERING – I</td>
</tr>
<tr>
<td>01 1x20</td>
<td>DESIGN OF STEEL STRUCTURES</td>
</tr>
<tr>
<td>01 1x21</td>
<td>CIVIL ENGINEERING PROFESSION & PRACTICE</td>
</tr>
<tr>
<td>01 1x22</td>
<td>FOUNDATION ENGINEERING</td>
</tr>
<tr>
<td>01 1x23</td>
<td>ENVIRONMENTAL ENGINEERING-II</td>
</tr>
<tr>
<td>01 1x24</td>
<td>TRANSPORTATION ENGINEERING-II</td>
</tr>
<tr>
<td>01 1x25</td>
<td>DESIGN OF HYDRAULIC STRUCTURES</td>
</tr>
<tr>
<td>01 1x26</td>
<td>DESIGN OF CONCRETE STRUCTURES-II</td>
</tr>
<tr>
<td>01 1x27</td>
<td>CONSTRUCTION PLANNING AND MANAGEMENT</td>
</tr>
<tr>
<td>01 1x28</td>
<td>CONTRACT, SPECIFICATION AND ESTIMATION</td>
</tr>
<tr>
<td>01 1x29</td>
<td>PROJECT-1 & PROJECT-2</td>
</tr>
<tr>
<td>01 1x30</td>
<td>FINITE ELEMENT METHODS</td>
</tr>
<tr>
<td>01 1x31</td>
<td>COMPUTER AIDED DESIGN</td>
</tr>
<tr>
<td>01 1x32</td>
<td>WATER AND LAND MANAGEMENT</td>
</tr>
<tr>
<td>01 1x33</td>
<td>AIR POLLUTION ENGINEERING</td>
</tr>
<tr>
<td>01 1x34</td>
<td>AIRPORT PLANNING AND DESIGN</td>
</tr>
<tr>
<td>01 1x35</td>
<td>RIVER HYDRAULICS AND SEDIMENT TRANSPORT</td>
</tr>
<tr>
<td>01 1x36</td>
<td>CIVIL ENGINEERING DRAWING USING AUTOCAD</td>
</tr>
<tr>
<td>01 1x37</td>
<td>STRUCTURAL DYNAMICS</td>
</tr>
<tr>
<td>01 1x38</td>
<td>SOLID WASTE MANAGEMENT</td>
</tr>
<tr>
<td>01 1x39</td>
<td>TRAFFIC ENGINEERING</td>
</tr>
<tr>
<td>01 1x40</td>
<td>DESIGN OF WATER RETAINING, PLATE AND SHELL STRUCTURES</td>
</tr>
<tr>
<td>01 1x41</td>
<td>INDUSTRIAL WASTE TREATMENT</td>
</tr>
<tr>
<td>01 1x42</td>
<td>TRANSPORTATION SYSTEMS AND PLANNING</td>
</tr>
<tr>
<td>01 1x43</td>
<td>WATER RESOURCES PLANNING AND MANAGEMENT</td>
</tr>
<tr>
<td>01 1x44</td>
<td>SOIL DYNAMICS</td>
</tr>
<tr>
<td>01 1x45</td>
<td>ADVANCED FOUNDATION ENGINEERING</td>
</tr>
<tr>
<td>01 1x46</td>
<td>WATER POWER ENGINEERING</td>
</tr>
<tr>
<td>01 1x47</td>
<td>BRIDGE ENGINEERING</td>
</tr>
<tr>
<td>01 1x48</td>
<td>SYSTEMS ENGINEERING</td>
</tr>
<tr>
<td>01 1x49</td>
<td>ENVIRONMENTAL IMPACT ASSESSMENT</td>
</tr>
<tr>
<td>01 1x50</td>
<td>PRE-STRESSED CONCRETE DESIGN</td>
</tr>
<tr>
<td>01 1x51</td>
<td>DESIGN OF DAMS</td>
</tr>
<tr>
<td>01 1x52</td>
<td>IRRIGATION ENGINEERING</td>
</tr>
<tr>
<td>01 1x53</td>
<td>LAND DRAINAGE</td>
</tr>
<tr>
<td>01 1x54</td>
<td>FLOODS AND DROUGHTS</td>
</tr>
<tr>
<td>01 1x55</td>
<td>GROUND WATER ENGINEERING</td>
</tr>
<tr>
<td>01 1x56</td>
<td>ADVANCED SOIL MECHANICS</td>
</tr>
<tr>
<td>01 1x57</td>
<td>ADVANCED STRUCTURAL ANALYSIS</td>
</tr>
<tr>
<td>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</td>
<td>60</td>
</tr>
<tr>
<td>05 1x01</td>
<td>OBJECT ORIENTED PROGRAMMING</td>
</tr>
<tr>
<td>05 1x02</td>
<td>COMPUTER ARCHITECTURE</td>
</tr>
<tr>
<td>05 1x03</td>
<td>DATA STRUCTURES</td>
</tr>
<tr>
<td>05 1x04</td>
<td>OBJECT ORIENTED ANALYSIS AND DESIGN</td>
</tr>
<tr>
<td>05 1x05</td>
<td>SYSTEMS PROGRAMMING</td>
</tr>
<tr>
<td>05 1x06</td>
<td>DESIGN AND ANALYSIS OF ALGORITHMS</td>
</tr>
<tr>
<td>05 1x07</td>
<td>WEB APPLICATIONS DESIGN AND DEVELOPMENT</td>
</tr>
<tr>
<td>05 1x08</td>
<td>FUNDAMENTALS OF DATA COMMUNICATION</td>
</tr>
<tr>
<td>05 1x09</td>
<td>DATABASE SYSTEMS</td>
</tr>
<tr>
<td>05 1x10</td>
<td>PRINCIPLES OF PROGRAMMING LANGUAGES</td>
</tr>
<tr>
<td>05 1x11</td>
<td>FORMAL LANGUAGES AND AUTOMATA THEORY</td>
</tr>
<tr>
<td>05 1x12</td>
<td>REAL TIME SYSTEMS</td>
</tr>
<tr>
<td>05 1x13</td>
<td>COMPUTER NETWORKS</td>
</tr>
<tr>
<td>05 1x14</td>
<td>SOFTWARE ENGINEERING</td>
</tr>
<tr>
<td>05 1x15</td>
<td>DISTRIBUTED COMPUTING</td>
</tr>
</tbody>
</table>
05 1x16 COMPILER DESIGN 68
05 1x17 ARTIFICIAL INTELLIGENCE 69
05 1x18 CRYPTOGRAPHY 69
05 1x19 MOBILE AND WIRELESS COMPUTING 70
05 1x20 PROJECT –I 71
05 1x21 INDUSTRIAL TRAINING 71
05 1x22 DATA MINING 71
05 1x23 PARALLEL COMPUTING 72
05 1x24 PROJECT-II 72
05 1x25 ADVANCED COMPUTER ARCHITECTURE 72
05 1x26 PERFORMANCE EVALUATION OF COMPUTER SYSTEM 73
05 1x27 OPTIMIZATION THEORY 73
05 1x28 PATTERN RECOGNITION 74
05 1x29 INTRODUCTION TO JAVA PROGRAMMING LANGUAGE 74
05 1x30 GENETIC ALGORITHMS 75
05 1x31 NATURAL LANGUAGE PROCESSING 76
05 1x32 COMPUTATIONAL GEOMETRY 76
05 1x33 COMPUTER GRAPHICS 76
05 1x34 NEUTRAL NETWORKS AND APPLICATIONS 77
05 1x35 SPEECH PROCESSING 77

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 78

04 1x01 BASIC ELECTRONICS 78
04 1x02 DIGITAL ELECTRONICS 79
04 1x03 INTRODUCTION TO COMMUNICATION SYSTEM 79
04 1x04 ANALOG ELECTRONICS 80
04 1x05 OPTICAL FIBER COMMUNICATION 81
04 1x06 INTELLIGENT INSTRUMENTATION 82
04 1x07 ELECTRONIC INSTRUMENTATION 82
04 1x08 SOLID STATE PHYSICS & DEVICES 83
04 1x09 ADVANCED ELECTROMAGNETIC FIELD 84
04 1x10 DIGITAL SIGNAL PROCESSING 84
04 1x11 MICROWAVE ENGINEERING 85
04 1x12 ELECTRICAL AND ELECTRONIC MATERIAL 85
04 1x13 ELECTRICAL AND ELECTRONIC MATERIAL- LAB 85
04 1x14 PROJECT- I 85
04 1x15 INDUSTRIAL TRAINING 85

ELECTIVES 86

04 1x61 MICROELECTRONICS: IC DESIGN AND FABRICATION 86
04 1x62 DIGITAL SIGNAL PROCESSORS 88
04 1x63 BIO-MEDICAL SENSORS AND TRANSDUCERS 88
04 1x64 TV ENGINEERING 88
04 1x65 MICRO-CONTROLLERS 89
04 1x66 DIGITAL SYSTEM DESIGN 89
04 1x67 DIGITAL IMAGE PROCESSING 90
04 1x68 BIOMEDICAL INSTRUMENTATION AND IMAGING 90
04 1x69 RADIO ASTRONOMY 90
04 1x70 EMBEDDED SYSTEM DESIGN 90
04 1x71 VLSI- DESIGN 91
04 1x72 ALGORITHM DEVELOPMENT 91
04 1x73 BIOMEDICAL SYSTEM AND ITS APPLICATION 91
04 1x74 DIGITAL COMMUNICATION & TELECOMMUNICATION MANAGEMENT 91
04 1x75 SOFT COMPUTING TECHNIQUES AND ITS APPLICATIONS 92
04 1x76 IC ARCHITECTURE AND FABRICATION 92
04 1x77 NANOTECHNOLOGY AND ITS APPLICATION 92
04 1x78 FIBER OPTICS AND NETWORKING TECHNOLOGY 92
04 1x79 EMBEDDED SYSTEM (REAL TIME SYSTEM) 92
DEPARTMENT OF ELECTRICAL ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 1x01</td>
<td>BASIC ELECTRICAL ENGINEERING</td>
</tr>
<tr>
<td>03 1x02</td>
<td>ELECTRICAL POWER GENERATION AND ECONOMICS</td>
</tr>
<tr>
<td>03 1x03</td>
<td>ELECTRICAL MACHINES-II</td>
</tr>
<tr>
<td>03 1x04</td>
<td>POWER SYSTEM-I</td>
</tr>
<tr>
<td>03 1x05</td>
<td>NETWORK THEORY</td>
</tr>
<tr>
<td>03 1x06</td>
<td>ELECTROMAGNETIC FIELD THEORY</td>
</tr>
<tr>
<td>03 1x07</td>
<td>ELECTRICAL INSTRUMENTS AND MEASUREMENTS</td>
</tr>
<tr>
<td>03 1x08</td>
<td>POWER SYSTEM-II</td>
</tr>
<tr>
<td>03 1x09</td>
<td>POWER ELECTRONICS</td>
</tr>
<tr>
<td>03 1x10</td>
<td>SIGNAL AND SYSTEM</td>
</tr>
<tr>
<td>03 1x11</td>
<td>MICROPROCESSOR AND ITS APPLICATION</td>
</tr>
<tr>
<td>03 1x12</td>
<td>LINEAR CONTROL THEORY</td>
</tr>
<tr>
<td>03 1x13</td>
<td>PROTECTION OF POWER APPARATUS AND SYSTEM</td>
</tr>
<tr>
<td>03 1x14</td>
<td>POWER SYSTEM DESIGN</td>
</tr>
<tr>
<td>03 1x15</td>
<td>MODERN CONTROL THEORY</td>
</tr>
<tr>
<td>03 1x16</td>
<td>UTILIZATION OF ELECTRICAL POWER</td>
</tr>
<tr>
<td>03 1x17</td>
<td>MICROPROCESSORS AND MICRO-CONTROLLERS</td>
</tr>
<tr>
<td>03 1x18</td>
<td>MODERN CONTROL THEORY</td>
</tr>
<tr>
<td>03 1x19</td>
<td>DIGITAL CONTROL SYSTEM</td>
</tr>
<tr>
<td>03 1x20</td>
<td>SIMULATION LAB</td>
</tr>
<tr>
<td>03 1x21</td>
<td>COMPUTER AIDED POWER SYSTEMS ANALYSIS</td>
</tr>
<tr>
<td>03 1x22</td>
<td>ADVANCED ELECTRICAL MACHINES</td>
</tr>
<tr>
<td>03 1x23</td>
<td>COMPUTER AIDED NETWORK ANALYSIS</td>
</tr>
<tr>
<td>03 1x24</td>
<td>EHV POWER TRANSMISSION</td>
</tr>
<tr>
<td>03 1x25</td>
<td>CONTROL SYSTEM DESIGN</td>
</tr>
<tr>
<td>03 1x26</td>
<td>COMPUTER BASED PROCESS CONTROL</td>
</tr>
<tr>
<td>03 1x27</td>
<td>COMPUTER AIDED MACHINE DESIGN</td>
</tr>
<tr>
<td>03 1x28</td>
<td>DIRECT ENERGY CONVERSION</td>
</tr>
<tr>
<td>03 1x29</td>
<td>MODERN POWER SYSTEM OPERATION AND CONTROL</td>
</tr>
<tr>
<td>03 1x30</td>
<td>POWER SYSTEM DYNAMICS AND RELIABILITY</td>
</tr>
<tr>
<td>03 1x31</td>
<td>FUZZY LOGIC CONTROL</td>
</tr>
<tr>
<td>03 1x32</td>
<td>NEUTRAL NETWORKS SYSTEM</td>
</tr>
<tr>
<td>03 1x33</td>
<td>SWITCH GEAR AND PROTECTION</td>
</tr>
<tr>
<td>03 1x34</td>
<td>ELECTRICAL MACHINES MODELING AND ANALYSIS</td>
</tr>
<tr>
<td>03 1x35</td>
<td>MICRO-CONTROLLERS AND ITS APPLICATIONS</td>
</tr>
<tr>
<td>03 1x36</td>
<td>HIGH VOLTAGE ENGINEERING</td>
</tr>
<tr>
<td>03 1x37</td>
<td>INDUSTRIAL DRIVES AND CONTROL</td>
</tr>
<tr>
<td>03 1x38</td>
<td>INDUSTRIAL TRAINING</td>
</tr>
<tr>
<td>03 1x39</td>
<td>PROJECT (MINOR)</td>
</tr>
<tr>
<td>03 1x40</td>
<td>SEMINAR</td>
</tr>
<tr>
<td>03 1x41</td>
<td>PROJECT (MAJOR)</td>
</tr>
<tr>
<td>03 1x42</td>
<td>ELECTRICAL MACHINE-I</td>
</tr>
</tbody>
</table>

DEPARTMENT OF INFORMATION TECHNOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 1x01</td>
<td>FUNDAMENTAL OF INFORMATION TECHNOLOGY</td>
</tr>
<tr>
<td>06 1x02</td>
<td>WEB TECHNOLOGY</td>
</tr>
<tr>
<td>06 1x03</td>
<td>OPERATING SYSTEM</td>
</tr>
<tr>
<td>06 1x04</td>
<td>VISUAL PROGRAMMING</td>
</tr>
<tr>
<td>06 1x05</td>
<td>INFORMATION SECURITY</td>
</tr>
<tr>
<td>06 1x06</td>
<td>DATA MINING & WARE HOUSING</td>
</tr>
<tr>
<td>06 1x07</td>
<td>DISTRIBUTED COMPUTING & ITS APPLICATION</td>
</tr>
<tr>
<td>06 1x08</td>
<td>INTRUSION DETECTION</td>
</tr>
<tr>
<td>06 1x09</td>
<td>XML WEB SERVICE</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>06 1x10</td>
<td>MULTIMEDIA TECHNOLOGY AND APPLICATION</td>
</tr>
<tr>
<td>06 1x11</td>
<td>WIRELESS AND MOBILE COMMUNICATION</td>
</tr>
<tr>
<td>06 1x12</td>
<td>INTRODUCTION TO INFORMATION TECHNOLOGY</td>
</tr>
<tr>
<td>06 1x13</td>
<td>BIOMETRIC SECURITY</td>
</tr>
<tr>
<td>06 1x14</td>
<td>NETWORK SECURITY</td>
</tr>
<tr>
<td>06 1x15</td>
<td>INTERACTIVE COMPUTER GRAPHICS</td>
</tr>
<tr>
<td>06 1x16</td>
<td>BIO-INFORMATICS</td>
</tr>
<tr>
<td>06 1x17</td>
<td>INTERNET AND INTRANET ENGINEERING</td>
</tr>
<tr>
<td>06 1x18</td>
<td>E-COMMERCE & ERP</td>
</tr>
<tr>
<td>06 1x19</td>
<td>IMAGE PROCESSING AND GIS</td>
</tr>
<tr>
<td>06 1x20</td>
<td>E-CUSTOMER RELATIONSHIP MANAGEMENT</td>
</tr>
<tr>
<td>06 1x21</td>
<td>WEB PROGRAMMING</td>
</tr>
<tr>
<td>06 1x22</td>
<td>MANAGEMENT INFORMATION SYSTEM</td>
</tr>
<tr>
<td>06 1x23</td>
<td>MINOR PROJECT</td>
</tr>
<tr>
<td>06 1x24</td>
<td>PROJECT-I</td>
</tr>
<tr>
<td>06 1x25</td>
<td>PROJECT-II</td>
</tr>
<tr>
<td>06 1x26</td>
<td>INDUSTRIAL TRAINING</td>
</tr>
</tbody>
</table>

DEPARTMENT OF MECHANICAL ENGINEERING 122

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 1x01</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING</td>
<td>122</td>
</tr>
<tr>
<td>02 1x02</td>
<td>ENGINEERING GRAPHICS</td>
<td>122</td>
</tr>
<tr>
<td>02 1x03</td>
<td>WORKSHOP</td>
<td>123</td>
</tr>
<tr>
<td>02 1x04</td>
<td>WORKSHOP PRACTICE-II</td>
<td>123</td>
</tr>
<tr>
<td>02 1x05</td>
<td>MATERIAL SCIENCE</td>
<td>123</td>
</tr>
<tr>
<td>02 1x06</td>
<td>STRENGTH OF MATERIAL</td>
<td>124</td>
</tr>
<tr>
<td>02 1x07</td>
<td>THERMODYNAMICS</td>
<td>124</td>
</tr>
<tr>
<td>02 1x08</td>
<td>KINEMATICS OF MACHINERY</td>
<td>125</td>
</tr>
<tr>
<td>02 1x09</td>
<td>MANUFACTURING BY SHAPING AND JOINING</td>
<td>125</td>
</tr>
<tr>
<td>02 1x10</td>
<td>FLUID MACHINERY</td>
<td>126</td>
</tr>
<tr>
<td>02 1x11</td>
<td>MACHINE DRAWING</td>
<td>126</td>
</tr>
<tr>
<td>02 1x12</td>
<td>STEAM POWER SYSTEM</td>
<td>126</td>
</tr>
<tr>
<td>02 1x13</td>
<td>DYNAMICS OF MACHINERY</td>
<td>127</td>
</tr>
<tr>
<td>02 1x14</td>
<td>MACHINE TOOLS AND MACHINING</td>
<td>127</td>
</tr>
<tr>
<td>02 1x15</td>
<td>DESIGN OF MACHINE ELEMENTS</td>
<td>128</td>
</tr>
<tr>
<td>02 1x16</td>
<td>HEAT AND MASS TRANSFER</td>
<td>128</td>
</tr>
<tr>
<td>02 1x17</td>
<td>NON CONVENTIONAL MANUFACTURING</td>
<td>129</td>
</tr>
<tr>
<td>02 1x18</td>
<td>COMPETITIVE MANUFACTURING STRATEGIES</td>
<td>129</td>
</tr>
<tr>
<td>02 1x19</td>
<td>INSTRUMENTATION AND MEASUREMENT</td>
<td>129</td>
</tr>
<tr>
<td>02 1x20</td>
<td>REFRIGERATION AND AIR CONDITIONING</td>
<td>129</td>
</tr>
<tr>
<td>02 1x21</td>
<td>MECHANICAL SYSTEM DESIGN</td>
<td>130</td>
</tr>
<tr>
<td>02 1x22</td>
<td>INTERNAL COMBUSTION ENGINE AND GAS TURBINE</td>
<td>131</td>
</tr>
<tr>
<td>02 1x23</td>
<td>OPERATION RESEARCH</td>
<td>131</td>
</tr>
<tr>
<td>02 1x24</td>
<td>AUTOMOTIVE MECHANICS</td>
<td>131</td>
</tr>
<tr>
<td>02 1x25</td>
<td>EXPERIMENTAL STRESS ANALYSIS</td>
<td>132</td>
</tr>
<tr>
<td>02 1x26</td>
<td>TOTAL PRODUCTIVITY MAINTENANCE & VALUE ENGINEERING</td>
<td>132</td>
</tr>
<tr>
<td>02 1x27</td>
<td>INDUSTRIAL POLLUTION</td>
<td>132</td>
</tr>
<tr>
<td>02 1x28</td>
<td>HEAT EXCHANGER DESIGN</td>
<td>133</td>
</tr>
<tr>
<td>02 1x29</td>
<td>FINITE ELEMENT METHODS AND APPLICATION</td>
<td>133</td>
</tr>
<tr>
<td>02 1x30</td>
<td>COMPUTER AIDED DESIGN AND MANUFACTURING</td>
<td>133</td>
</tr>
<tr>
<td>02 1x31</td>
<td>QUALITY ASSURANCE AND RELIABILITY</td>
<td>134</td>
</tr>
<tr>
<td>02 1x32</td>
<td>ROBOTICS AND ROBOT APPLICATION</td>
<td>134</td>
</tr>
<tr>
<td>02 1x33</td>
<td>MANUFACTURING PROCESS I</td>
<td>134</td>
</tr>
<tr>
<td>02 1x34</td>
<td>MANUFACTURING PROCESS-II</td>
<td>135</td>
</tr>
<tr>
<td>02 1x35</td>
<td>SEMINAR</td>
<td>135</td>
</tr>
<tr>
<td>02 1x36</td>
<td>MINOR PROJECT</td>
<td>135</td>
</tr>
<tr>
<td>02 1x37</td>
<td>INDUSTRIAL TRAINING</td>
<td>135</td>
</tr>
<tr>
<td>02 1x38</td>
<td>CONTROL AND MEASUREMENT</td>
<td>136</td>
</tr>
</tbody>
</table>
DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

The Syllabus Of Electrical And Electronics Engineering Will Be Same As The Syllabus Of Electrical Engineering, But Electives May Be Chosen From Both Streams – Electrical Engineering And Electronics Engineering For Earning Required Credit For Obtaining The B.Tech Degree In Electrical & Electronics, And Communication Engineering.

DEPARTMENT OF LEATHER TECHNOLOGY

07 1x01 THEORY & PRACTICES OF PRESERVATION AND PRE TANNING PROCESSES
07 1x02 INTRODUCTION TO LEATHER TECHNOLOGY
07 1x03 BIOCHEMISTRY OF PROTEIN
07 1x04 CHEMICAL ENGINEERING – I
07 1x05 CHEMICAL ENGINEERING – II
07 1x06 PRINCIPLES OF INORGANIC TANNAGE
07 1x07 PRINCIPLES OF ORGANIC TANNAGE
07 1x08 PRACTICES OF LEATHER MANUFACTURING – I
07 1x09 ANALYTICAL CHEMISTRY OF LEATHER
07 1x10 PRINCIPLES OF POST TANNING OPERATION
07 1x11 LEATHER BIO-TECHNOLOGY
07 1x12 LEATHER PRODUCT TECHNOLOGY- I
07 1x13 PRINCIPLES OF MATERIAL TESTING
07 1x14 CHEMICAL ENGINEERING –III
07 1x15 LEATHER FINISHING MATERIALS AND AUXILIARIES
07 1x16 ELECTIVES –I
07 1x17 PRACTICES OF LEATHER MANUFACTURING -II
07 1x18 THEORY OF LEATHER SUPPLEMENTS & SYNTHETICS
07 1x19 INSTRUMENTATION AND PROCESS CONTROL
07 1x20 LEATHER PRODUCT TECHNOLOGY-II
07 1x21 ELECTIVE –II
07 1x22 ELECTIVE –III
07 1x23 TANNERY WASTE MANAGEMENT
07 1x24 PRACTICES OF LEATHER MANUFACTURING –III
07 1x25 LEATHER PRODUCT TECHNOLOGY –III
07 1x26 PROJECT WORK

PRACTICALS

Eight experiments based on the theory papers in the relevant semesters.

ELECTIVE – I

07 1x16 ANIMAL AND TANNERY BY PRODUCT UTILIZATION. (LTE 1.1)
07 1x16 POLYMER SCIENCE & TECHNOLOGY. (LTE 1.2)
07 1x16 CO-ORDINATION CHEMISTRY. (LTE 1.3)
07 1x16 ORGANIC CHEMISTRY. (LTE 1.4)
ELECTIVE –II
07 1x21 FASHION STYLING AND COMPUTER ADDED DESIGN OF LEATHER PRODUCT. (LTE 2.5)
07 1x21 ADVANCE LEATHER PROCESS TECHNOLOGY. (LTE 2.6)
07 1x21 APPLIED STATISTICS & QUALITY CONTROL. (LTE 2.7)
07 1x21 SURFACE AND COLLOID CHEMISTRY (LTE 2.8)

ELECTIVE – III
07 1x22 COMPUTER APPLICATION IN LEATHER TECHNOLOGY. (LTE 3.9)
07 1x22 PROFESSIONAL ETHICS. (LTE 3.10)
07 1x22 ENTREPRENEURSHIP. (LTE 3.11)
07 1x22 TOTAL QUALITY MANAGEMENT. (LTE 3.12)

DEPARTMENT PHARMACEUTICAL SCIENCE

09 1101 PHARMACEUTICS - I (PHYSICAL PHARMACY)
09 1102 PHARMACEUTICAL ANALYSIS – I
09 1103 PHARMACEUTICAL CHEMISTRY – I (INORGANIC PHARMACEUTICAL CHEMISTRY)
09 1104 PHARMACOGNOSY - I
09 1105 COMMUNICATIVE ENGLISH
09 1106 REMEDIAL MATHEMATICS
09 1107 REMEDIAL BIOLOGY
09 1201 PHARMACEUTICS - II (UNIT OPERATIONS I, INCLUDING ENGG. DRAWING)
09 1202 PHARMACEUTICAL CHEMISTRY – II (PHYSICAL CHEMISTRY)
09 1203 PHARMACEUTICAL CHEMISTRY – III (ORGANIC CHEMISTRY)
09 1204 ANATOMY, PHYSIOLOGY & HEALTH EDUCATION (APHE) – I
09 1205 ADVANCED MATHEMATICS
09 1301 PHARMACEUTICS - III (UNIT OPERATIONS II)
09 1302 PHARMACEUTICAL CHEMISTRY – IV (ORGANIC CHEMISTRY - II)
09 1303 PHARMACOGNOSY – II
09 1304 PHARMACEUTICAL ANALYSIS – II
09 1305 ANATOMY, PHYSIOLOGY & HEALTH EDUCATION (APHE) – II
09 1401 PHARMACEUTICS - IV (DISPENSING AND COMMUNITY PHARMACY)
09 1402 PHARMACEUTICAL MICROBIOLOGY
09 1403 PHARMACOGNOSY – III
09 1404 PATHOPHYSIOLOGY OF COMMON DISEASES
09 1405 BASIC ELECTRONICS AND COMPUTER APPLICATIONS
09 1406 PHARMACEUTICAL JURISPRUDENCE & ETHICS
09 1501 PHARMACEUTICS - V (PHARMACEUTICAL TECHNOLOGY - I)
09 1502 PHARMACEUTICAL CHEMISTRY – V (BIOCHEMISTRY)
09 1503 PHARMACOLOGY – I
09 1504 PHARMACOGNOSY – IV
09 1505 PHARMACEUTICS-VI (HOSPITAL PHARMACY)
09 1601 PHARMACEUTICS-VI (BIOPHARMACEUTICS & PHARMACOKINETICS)
09 1602 PHARMACEUTICAL CHEMISTRY – VI (MEDICINAL CHEMISTRY - I)
09 1603 PHARMACOGNOSY – V (CHEMISTRY OF NATURAL PRODUCTS)
09 1604 PHARMACOLOGY – II
09 1605 PHARMACEUTICAL ANALYSIS – III
09 1701 PHARMACEUTICS – VIII (PHARMACEUTICAL TECHNOLOGY II)
09 1702 PHARMACOLOGY – III
09 1703 PHARMACEUTICAL CHEMISTRY – VII (MEDICINAL CHEMISTRY - II)
09 1704 PHARMACEUTICAL BIOTECHNOLOGY
09 1705 PHARMACEUTICAL INDUSTRIAL MANAGEMENT
09 1706 ELECTIVE THEORY
09 1801 PHARMACEUTICS – IX (DOSAGE FORM DESIGN)
09 1802 PHARMACEUTICAL CHEMISTRY – VIII (MEDICINAL CHEMISTRY - III)
09 1803 PHARMACOGNOSY – VI
09 1804 PHARMACOLOGY – IV
09 1805 PROJECT WORK AND VIVA – VOCE
PRACTICALS
Eight experiments based on the theory papers in the relevant semesters.

ELECTIVES THEORY AND PRACTICAL
09 17E1 COSMETIC TECHNOLOGY
09 17E2 HERBAL DRUG TECHNOLOGY
09 17E3 BIOASSAYS
09 17E4 HOSPITAL PHARMACY ADMINISTRATION
09 17E5 ADVANCED PHARMACEUTICAL ANALYSIS

DEPARTMENT DAIRY TECHNOLOGY
COURSE CODE

All the courses offered are denoted by codes comprising of two letters except EEE and four digits. The department code will be followed by four digit number to represent course / subject being offered in a semester. The department subject code i.e., last two digits will be same for subject/course being offered in different semesters to different branch of students and have some course content for the subject.

The letter symbols of the departments are as follows:

- CE - Civil Engineering
- CH - Chemistry
- CS - Computer Science & Engineering
- DT - Dairy Technology
- EC - Electronics and Communication Engineering
- EE - Electrical Engineering
- EEE - Electrical & Electronics Engineering
- HS - Humanities and Social Sciences
- IT - Information Technology
- LT - Leather Technology
- MA - Mathematics
- ME - Mechanical Engineering
- PH - Physics
- PY - Pharmacy

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program code:</td>
<td>Semester code (If programs have more than nine semesters then 10th to 16th semesters will be coded in hexadecimal i.e., A to F)</td>
<td>Department Subject code: From 00 to 99</td>
</tr>
<tr>
<td>UG Program:1</td>
<td>1</td>
<td>Department Subject code: From 00 to 99</td>
</tr>
<tr>
<td>PG Program:2</td>
<td>2</td>
<td>A course offered by any department to other department/Branch Students in different semester with Same syllabus content will have a unique subject code only.</td>
</tr>
<tr>
<td>1st Sem</td>
<td>2nd Sem</td>
<td>3rd Sem</td>
</tr>
</tbody>
</table>

Theory and Practical/ Sessional/ Project components have been separated & P is added in the end.

M. Tech Program

| 1rst Sem, 2nd Sem, 3rd Sem, 4th Sem | (1,2,3,4) |
Note:

- Group A: Civil Engineering and Mechanical Engineering.
- First and Second Semester subjects have been divided in two groups: Group A and Group B. If a set of student of a branch is offered Group A in First Semester then this set of students will be offered Group B in Second Semester; likewise, if a set of students of another branch offered Group B in First Semester then they will be offered Group A in Second Semester.
- In course code Column 'X' represents semester code- to be substituted by the Department based on subject being offered either in First or Second Semester.
- In Bachelor of Pharmacy, and in Bachelor of Dairy Technology, the entire semester Course will be different and listed separately.
B. Tech. SEMESTER-I

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course Code</th>
<th>Subject</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24 1x05</td>
<td>Communicative English (Group A)</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>01 1x02</td>
<td>Environmental Science (Group B)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>21 1x01</td>
<td>Mathematics-1</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>22 1x01</td>
<td>Physics (Group A)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>23 1x01</td>
<td>Engineering Chemistry (Group B)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>03 1x01</td>
<td>Basic Electrical Engineering (Group A)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>01 1x01</td>
<td>Engineering Mechanics (Group B)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>061x01</td>
<td>Fundamentals of information Technology(Group A)</td>
<td>3-0-2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>021x01</td>
<td>Elements of Mech. Engineering (Group B)</td>
<td>3-0-2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>021x02</td>
<td>Engineering Graphics (Group A)</td>
<td>2-0-4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>021x03</td>
<td>Workshop (Group B)</td>
<td>0-0-6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GE 1x01</td>
<td>EAA-I-NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL :-</td>
<td>16-2-16</td>
<td>27</td>
</tr>
</tbody>
</table>

B. Tech. SEMESTER-II

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course Code</th>
<th>Subject</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24 1x05</td>
<td>Communicative English (Group B)</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>01 1x02</td>
<td>Environmental Science (group A)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>21 1x01</td>
<td>Mathematics –II</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>22 1x01</td>
<td>Physics (Group B)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>23 1x01</td>
<td>Engineering Chemistry (Group A)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>03 1x01</td>
<td>Basic Electrical engineering (Group B)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>01 1x01</td>
<td>Engineering Mechanics (Group A)</td>
<td>3-0-3</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>06 1x01</td>
<td>Fundamentals of information technology (group B)</td>
<td>3-0-2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>02 1x01</td>
<td>Elements of Mech. engineering (Group A)</td>
<td>3-0-2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>02 1x02</td>
<td>Engineering graphics (Group B)</td>
<td>2-0-4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>02 1x03</td>
<td>workshop (Group A)</td>
<td>0-0-6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GE 1x01</td>
<td>EAA- II-NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL :-</td>
<td>16-1-16</td>
<td>26</td>
</tr>
</tbody>
</table>
Course Structure for B. Tech. Program
Bachelor of Technology in Civil Engineering

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEUG</td>
<td>1</td>
<td>24 1x05</td>
<td>Communicative English</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>1</td>
<td>22 1101</td>
<td>Physics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>1</td>
<td>21 1x01</td>
<td>Mathematics I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>1</td>
<td>03 1x01</td>
<td>Basic Electrical Engineering</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>1</td>
<td>06 1x01</td>
<td>Fundamentals of Information Technology</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>1</td>
<td>02 1x02</td>
<td>Engineering Graphics</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>1</td>
<td>GE 1x01</td>
<td>EAA-I-NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>CEUG</td>
<td>2</td>
<td>01 1x02</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>2</td>
<td>23 1x01</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>2</td>
<td>21 1x02</td>
<td>Mathematics II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>2</td>
<td>01 1x01</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>2</td>
<td>02 1x01</td>
<td>Elements of Mechanical Engineering</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>2</td>
<td>02 1x03</td>
<td>Workshop</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>2</td>
<td>GE 1x02</td>
<td>EAA-II-NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>CEUG</td>
<td>3</td>
<td>24 1x01</td>
<td>Organizational Behaviour and Industrial Psychology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>3</td>
<td>01 1x03</td>
<td>Building Science</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>3</td>
<td>01 1x05</td>
<td>Engineering Geology</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>3</td>
<td>01 1x07</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>3</td>
<td>01 1x14</td>
<td>Civil Engineering Drawing</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>3</td>
<td>24 1x06</td>
<td>Industrial Economics & Accountancy</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>3</td>
<td>21 1x03</td>
<td>Mathematics - III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>3</td>
<td>GE 1x03</td>
<td>EAA III-NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>CEUG</td>
<td>4</td>
<td>01 1x04</td>
<td>Field Measurement (Surveying)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>4</td>
<td>01 1x06</td>
<td>Mechanics of Solid - I</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>4</td>
<td>01 1x10</td>
<td>Hydraulics and Open Channel Flow</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>4</td>
<td>05 1x01</td>
<td>Object Oriented</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Semester</td>
<td>Course code</td>
<td>Course title</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Credits</td>
<td>Total Credit/Sem.</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>CEUG</td>
<td>4</td>
<td>21 1x04</td>
<td>NUMERICAL METHODS AND COMPUTATIONAL TECHNIQUE</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>4</td>
<td>02 1x07</td>
<td>THERMODYNAMICS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>4</td>
<td>GE 1x04</td>
<td>EAA-IV NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

B. Tech (Civil Engg.) Semester – V

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEUG</td>
<td>5</td>
<td>01 1x08</td>
<td>ADVANCED SURVEYING</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>5</td>
<td>01 1x09</td>
<td>SOIL MECHANICS</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>5</td>
<td>01 1x11</td>
<td>STRUCTURAL ANALYSIS-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>5</td>
<td>01 1x12</td>
<td>ENGINEERING HYDROLOGY</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>5</td>
<td>01 1x13</td>
<td>MECHANICS OF SOLID –II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>5</td>
<td>02 1x10</td>
<td>FLUID MACHINERY</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>26</td>
</tr>
</tbody>
</table>

B. Tech (Civil Engg.) Semester – VI

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEUG</td>
<td>6</td>
<td>01 1x15</td>
<td>SOIL AND ROCK MECHANICS</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>6</td>
<td>01 1x16</td>
<td>STRUCTURAL ANALYSIS –II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>6</td>
<td>01 1x17</td>
<td>DESIGN OF CONCRETE STRUCTURE-I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>6</td>
<td>01 1x18</td>
<td>ENVIRONMENTAL ENGINEERING-I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>6</td>
<td>01 1x19</td>
<td>TRANSPORTATION ENGINEERING-I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>6</td>
<td>01 1x20</td>
<td>DESIGN OF STEEL STRUCTURES</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>27</td>
</tr>
</tbody>
</table>

B. Tech (Civil Engg.) Semester – VII

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEUG</td>
<td>7</td>
<td>01 1x26</td>
<td>DESIGN OF CONCRETE STRUCTURE - II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>7</td>
<td>01 1x25</td>
<td>DESIGN OF HYDRAULIC STRUCTURES</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>7</td>
<td>01 1xx</td>
<td>ELECTIVE-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>7</td>
<td>01 1x23</td>
<td>ENVIRONMENTAL ENGINEERING -II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>7</td>
<td>01 1x22</td>
<td>FOUNDATION ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>7</td>
<td>01 1x24</td>
<td>TRANSPORTATION ENGINEERING-II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>7</td>
<td>01 1x29</td>
<td>PROJECT-I</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>7</td>
<td>01 1x21</td>
<td>CIVIL ENGINEERING PROFESSION & PRACTICE OR VOCATIONAL TRAINING(DURING SUMMER FOR 4 WEEKS AFTER 6TH SEMESTER</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>27</td>
</tr>
</tbody>
</table>

B. Tech (Civil Engg.) Semester – VIII

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Code</td>
<td>Course Name</td>
<td>Credits</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Sem.</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>8</td>
<td>01 1x27 CONSTRUCTION PLANNING AND MANAGEMENT</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>8</td>
<td>01 1x28 CONTRACT SPECIFICATION ESTIMATION</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>8</td>
<td>01 xxx ELECTIVE – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>8</td>
<td>01 xxx ELECTIVE -III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>8</td>
<td>01 1x52 IRRIGATION ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>8</td>
<td>011x29 PROJECT-II IN CONTINUATION OF 7TH SEM. PROJECT</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>10</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

B.Tech.(civil engg.) Elective – I

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x51 FINITE ELEMENT METHODS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x53 COMPUTER AIDED DESIGN</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x54 WATER AND LAND MANAGEMENT</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x55 AIR POLLUTION ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x56 DESIGN OF STEEL STRUCTURE -II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x60 SOLID WASTE MANAGEMENT</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x61 TRAFFIC ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x62 INTRODUCTION TO EARTHQUAKE RESISTANT DESIGN METHODS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x87 ADVANCED SOIL MECHANICS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 1</td>
<td>01 1x88 ADVANCED STRUCTURAL ANALYSIS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

B. Tech (Civil Engg.) Elective – II

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEUG</td>
<td>EL 2</td>
<td>01 1x59 STRUCTURAL DYNAMICS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 2</td>
<td>01 1x52 GEOGRAPHICAL INFORMATION SYSTEM AND REMOTE SENSING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 2</td>
<td>01 1x57 RIVER HYDRAULICS AND SEDIMENT TRANSPORT</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 2</td>
<td>01 1x58 CIVIL ENGINEERING DRAWING USING AUTO CAD</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 2</td>
<td>01 1x76 ADVANCED FOUNDATION ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 2</td>
<td>01 1x86 GROUND WATER ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CEUG</td>
<td>EL 2</td>
<td>01 1x56 AIRPORT PLANNING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Program</td>
<td>Semester</td>
<td>Course code</td>
<td>Course title</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Credits</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>B. Tech (Civil Engg.) Elective – III</td>
<td></td>
<td></td>
<td>DESIGN OF WATER RETAINING, PLATE AND SHELL STRUCTURES</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INDUSTRIAL WASTE TREATMENT</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TRANSPORTATION SYSTEMS AND PLANNING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WATER RESOURCES PLANNING AND MANAGEMENT</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOIL DYNAMICS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>B. Tech (Civil Engg.) Elective – IV</td>
<td></td>
<td></td>
<td>WATER POWER ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BRIDGE ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SYSTEM ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENVIRONMENTAL IMPACT ASSESSMENT</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PR-STRESSED CONCRETE DESIGN</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DESIGN OF DAMS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FLOOD & DROUGHTS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DISASTER MANAGEMENT AND MITIGATION</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING</td>
<td></td>
<td></td>
<td>COMMUNICATIVE ENGLISH</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PHYSICS</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MATHEMATICS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BASIC ELECTRICAL ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FUNDAMENTAL OF INFORMATION TECHNOLOGY</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENGINEERING GRAPHICS</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EAA-I- NSS</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

<p>| B.TECH. (Mech Engg.) SEMESTER-I | | | ENVIRONMENTAL SCIENCE | 3 | 0 | 3 | 5 |
| | | | ENGINEERING CHEMISTRY | 3 | 0 | 3 | 5 |
| | | | MATHEMATICS-II | 3 | 1 | 0 | 4 |
| | | | ENGINEERING MECHANICS | 3 | 0 | 3 | 5 |
| | | | ELEMENTS OF MECHANICAL ENGINEERING | 3 | 0 | 2 | 4 |</p>
<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEUG</td>
<td>2</td>
<td>02 1x03</td>
<td>WORKSHOP</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MEUG</td>
<td>2</td>
<td>GE 1x02</td>
<td>EAA- II- NSS</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.TECH. (Mech Engg.) SEMESTER-III

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEUG 3</td>
<td>24 1x01 ORGANIZATIONAL BEHAVIOUR AND INDUSTRIAL PSYCHOLOGY</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MEUG 3</td>
<td>01 1x07 FLUID MECHANICS</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MEUG 3</td>
<td>02 1x05 MATERIAL SCIENCE</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MEUG 3</td>
<td>211x03 MATHEMATICS-III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MEUG 3</td>
<td>02 1x06 STRENGTH OF MATERIAL</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG 3</td>
<td>02 1x07 THERMODYNAMICS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MEUG 3</td>
<td>GE 1x03 EAA-III-NSS</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.TECH. (Mech Engg.) SEMESTER-IV

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEUG 4</td>
<td>04 1x01 BASIC ELECTRONIC</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG 4</td>
<td>05 1x01 OBJECT ORIENTED PROGRAMMING</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG 4</td>
<td>21 1x04 NUMERICAL METHODS AND COMPUTATIONAL TECHNIQUE</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG 4</td>
<td>02 1x08 KINEMATICS OF MACHINERY</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MEUG 4</td>
<td>02 1x09 MANUFACTURING BY SHAPING AND JOINING</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG 4</td>
<td>02 1x11 MACHINE DRAWING</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MEUG 4</td>
<td>GE 1x04 EAA-IV-NSS</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.TECH. (Mech Engg.) SEMESTER-V

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEUG 5</td>
<td>24 1x02 PERSONAL MANAGEMENT AND INDUSTRIAL RELATION</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MEUG 5</td>
<td>06 1x05 INFORMATION SECURITY</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MEUG 5</td>
<td>02 1x10 FLUID MACHINERY</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG 5</td>
<td>02 1x12 STEAM POWER SYSTEM</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG 5</td>
<td>02 1x13 DYNAMICS OF MACHINERY</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG 5</td>
<td>02 1x14 MACHINE TOOLS AND MACHINERY</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

B.TECH. (MECH ENGG.) SEMESTER-VI

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEUG</td>
<td>6</td>
<td>02 1x16</td>
<td>HEAT AND MASS TRANSFER</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MEUG</td>
<td>6</td>
<td>02 1x17</td>
<td>NON CONVENTIONAL MANUFACTURING</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MEUG</td>
<td>6</td>
<td>02 1x18</td>
<td>COMPETITIVE MANUFACTURING STRATEGIES</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MEUG</td>
<td>6</td>
<td>02 1x19</td>
<td>INSTRUMENTATION AND MEASUREMENT</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
MEUG 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit/ Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 1x06 INDUSTRIAL ECONOMICS AND ACCOUNTANCY</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x15 DESIGN OF MACHINE ELEMENT</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x35 SEMINAR</td>
<td>0 0 2 1 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.TECH. (Mech Engg.) SEMESTER-VII

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit/ Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 1xxx ELECTIVE-L</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1xxx ELECTIVE-LL</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x20 REFRIGERATION AND AIR CONDITIONING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x22 INTERNAL COMBUSTION ENGINE AND GAS TURBINE</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x30 COMPUTER AIDED DESIGN AND MANUFACTURING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x36 MINOR PROJECT</td>
<td>0 0 5 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x37 INDUSTRIAL TRAINING</td>
<td>2 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.TECH. (Mech Engg.) SEMESTER-VIII

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit/ Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 1x07 SUSTAINABLE DEVELOPMENT</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06 1x22 MANAGEMENT INFORMATION SYSTEM</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x21 MECHANICAL SYSTEM DESIGN</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1xxx ELECTIVE-III</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x40 PROJECT</td>
<td>0 0 15 10 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIST OF ELECTIVE

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit/ Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 1x23 OPERATION RESEARCH</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x24 AUTOMOTIVE MECHANICS</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x25 EXPERIMENTAL STRESS ANALYSIS</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x26 TOTAL PRODUCTIVITY MAINTENANCE AND VALUE ENGINEERING</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x28 HEAT EXCHANGE DESIGN</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x29 FINITE ELEMENT METHOD AND APPLICATIONS</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACHELOR OF TECHNOLOGY IN ELECTRICAL ENGINEERING

B.TECH. (EE) SEMESTER-I

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit/ Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 1x31 QUALITY ASSURANCE AND RELIABILITY</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x27 INDUSTRIAL POLLUTION</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 1x32 ROBOTIC AND ROBOT APPLICATION</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Semesters</td>
<td>Course code</td>
<td>Course title</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------------------------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>B.TECH. (EE) SEMESTER-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUG</td>
<td>1</td>
<td>24 1x05</td>
<td>COMMUNICATIVE ENGLISH</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>1</td>
<td>22 1x01</td>
<td>PHYSICS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>1</td>
<td>21 1x01</td>
<td>MATHEMATICS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>1</td>
<td>03 1x01</td>
<td>BASIC ELECTRICAL ENGINEERING</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>1</td>
<td>06 1x01</td>
<td>FUNDAMENTAL OF INFORMATION TECHNOLOGY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>1</td>
<td>02 1x02</td>
<td>ENGINEERING GRAPHICS</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>1</td>
<td>GE 1101</td>
<td>EAA-I-NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.TECH. (EE) SEMESTER-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUG</td>
<td>2</td>
<td>01 1x02</td>
<td>ENVIRONMENTAL SCIENCE</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>2</td>
<td>23 1x01</td>
<td>ENGINEERING CHEMISTRY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>2</td>
<td>21 1x02</td>
<td>MATHEMATICS-II</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>2</td>
<td>01 1x01</td>
<td>ENGINEERING MECHANICS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>2</td>
<td>02 1x01</td>
<td>ELEMENTS OF MEchanical ENGINEERING</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>2</td>
<td>02 1x03</td>
<td>WORKSHOP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>2</td>
<td>GE 1202</td>
<td>EAA-II-NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.TECH. (EE) SEMESTER-III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUG</td>
<td>3</td>
<td>04 1x01</td>
<td>BASIC ELECTRONICS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>3</td>
<td>03 1x42</td>
<td>ELECTRICAL MACHINE-I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>3</td>
<td>21 1x03</td>
<td>MATHEMATICS-III</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>3</td>
<td>05 1x01</td>
<td>OBJECT ORIENTED PROGRAMMING</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>3</td>
<td>04 1x08</td>
<td>SOLID STATE PHYSICS AND DEVICES</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>3</td>
<td>02 1x07</td>
<td>THERMODYNAMICS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>3</td>
<td>GE 1x03</td>
<td>EAA-III-NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.TECH. (EE) SEMESTER-IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUG</td>
<td>4</td>
<td>04 1x01</td>
<td>DIGITAL ELECTRONICS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>4</td>
<td>21 1x04</td>
<td>NUMERICAL METHOD AND COMPUTATIONAL TECHNIQUE</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>4</td>
<td>03 1x03</td>
<td>ELECTRICAL MACHINE-II</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>4</td>
<td>24 1x01</td>
<td>ORGANIZATIONAL BEHAVIOUR AND INDUSTRIAL PSYCHOLOGY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>4</td>
<td>03 1x04</td>
<td>POWER SYSTEM -I</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>4</td>
<td>24 1x06</td>
<td>INDUSTRIAL ECONOMICS AND ACCOUNTANCY</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>4</td>
<td>GE 1x04</td>
<td>EAA-IV-NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Semester</td>
<td>Course code</td>
<td>Course title</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>B.TECH. (EE) SEMESTER-V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUG</td>
<td>5</td>
<td>04 1x04</td>
<td>ANALOG ELECTRONICS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>5</td>
<td>03 1x05</td>
<td>NETWORK THEORY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>5</td>
<td>03 1x08</td>
<td>POWER SYSTEM-II</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>5</td>
<td>03 1x06</td>
<td>ELECTROMAGNETIC FIELD THEORY</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>5</td>
<td>03 1x10</td>
<td>SIGNALS AND SYSTEM</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>5</td>
<td>06 1x05</td>
<td>INFORMATION SECURITY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>B.TECH. (EE) SEMESTER-VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUG</td>
<td>6</td>
<td>05 1x02</td>
<td>COMPUTER ARCHITECTURE</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>6</td>
<td>03 1x16</td>
<td>UTILIZATION OF ELECTRICAL POWER</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>6</td>
<td>04 1x03</td>
<td>INTRODUCTION TO COMMUNICATION SYSTEM</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>6</td>
<td>03 1x11</td>
<td>MICROPROCESSOR AND ITS APPLICATION</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>6</td>
<td>03 1x09</td>
<td>POWER ELECTRONICS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>6</td>
<td>03 1x07</td>
<td>ELECTRICAL INSTRUMENT AND MEASUREMENT</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>B.TECH. (EE) SEMESTER-VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUG</td>
<td>7</td>
<td>03 1xx</td>
<td>ELECTIVE-I</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>7</td>
<td>04 1x06</td>
<td>INTELLIGENT INSTRUMENT</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>7</td>
<td>03 1x38</td>
<td>INDUSTRIAL TRAINING</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>7</td>
<td>03 1x12</td>
<td>LINEAR CONTROL THEORY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>7</td>
<td>03 1x13</td>
<td>PROTECTION OF POWER APPARATUS AND SYSTEM</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>7</td>
<td>03 1x39</td>
<td>PROJECT (MINOR)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B.TECH. (EE) SEMESTER-VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUG</td>
<td>8</td>
<td>03 1xx</td>
<td>ELECTIVE-II</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>8</td>
<td>03 1x15</td>
<td>MODERN CONTROL THEORY</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>8</td>
<td>24 1x02</td>
<td>PERSONAL MANAGEMENT AND INDUSTRIAL RELATION</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>8</td>
<td>03 1x41</td>
<td>PROJECT (MAJOR)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>8</td>
<td>03 1x40</td>
<td>SEMINAR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>8</td>
<td>03 1x14</td>
<td>POWER SYSTEM DESIGN</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B.TECH. (EE) ELECTIVE*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>05 1x02</td>
<td>ADVANCED COMPUTER ARCHITECTURE</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>05 1x09</td>
<td>DATA BASE SYSTEM</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Program</td>
<td>Semester</td>
<td>Course code</td>
<td>Course title</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>05 1x13</td>
<td>COMPUTER NETWORK</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>05 1x17</td>
<td>ARTIFICIAL INTELLIGENCE</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>04 1x05</td>
<td>OPTICAL FIBER COMMUNICATION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>04 1x10</td>
<td>DIGITAL SIGNAL PROCESSING</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>04 1x66</td>
<td>DIGITAL SYSTEM DESIGN</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>04 1x67</td>
<td>DIGITAL IMAGE PROCESSING</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>04 1x70</td>
<td>EMBEDDED SYSTEM DESIGN</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>04 1x71</td>
<td>VLSI-DESIGN</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x19</td>
<td>DIGITAL CONTROL SYSTEM</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x21</td>
<td>COMPUTER AIDED POWER SYSTEM ANALYSIS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x22</td>
<td>ADVANCED ELECTRICAL MACHINES</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x23</td>
<td>COMPUTER AIDED NETWORK ANALYSIS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x24</td>
<td>EHV POWER TRANSMISSION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x25</td>
<td>CONTROL SYSTEM DESIGN</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x26</td>
<td>COMPUTER BASED PROCESS CONTROL</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x27</td>
<td>COMPUTER AIDED MACHINE DESIGN</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x28</td>
<td>DIRECT ENERGY CONVERSION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x29</td>
<td>MODERN POWER SYSTEM OPERATION AND CONTROL</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x30</td>
<td>POWER SYSTEM DYNAMICS AND RELIABILITY</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x31</td>
<td>FUZZY LOGIC CONTROL</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x32</td>
<td>NEURAL NETWORK SYSTEM</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x33</td>
<td>SWITCH MODE POWER CONVERTER</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x34</td>
<td>ELECTRICAL MACHINE MODELING AND ANALYSIS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x35</td>
<td>MICRO-CONTROLLER</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EEUG</td>
<td>EI</td>
<td>03 1x36</td>
<td>INDUSTRIAL DRIVES AND CONTROL</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Program</td>
<td>Semesters</td>
<td>Course code</td>
<td>Course title</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>B.TECH. (ECE) SEMESTER-I</td>
<td>1</td>
<td>01 1x01</td>
<td>ENGINEERING MECHANICS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23 1x01</td>
<td>ENGINEERING CHEMISTRY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>011x02</td>
<td>ENVIRONMENTAL SCIENCE</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>21 1x01</td>
<td>MATHEMATICS-I</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>02 1x01</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>GE 1x01</td>
<td>EAA-I-NSS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B.TECH. (ECE) SEMESTER-II</td>
<td>2</td>
<td>03 1x01</td>
<td>BASIC ELECTRICAL ENGINEERING</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24 1x05</td>
<td>COMMUNICATIVE ENGLISH</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>06 1x01</td>
<td>FUNDAMENTAL OF INFORMATION TECHNOLOGY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21 1x02</td>
<td>MATHEMATICS-II</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>02 1x02</td>
<td>ENGINEERING GRAPHICS</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>GE 1x03</td>
<td>EAA-II-NSS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>B.TECH. (ECE) SEMESTER-III</td>
<td>3</td>
<td>24 1x01</td>
<td>ORGANIZATIONAL BEHAVIOUR AND INDUSTRIAL PSYCHOLOGY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>04 1x08</td>
<td>SOLID STATE PHYSICS AND DEVICES</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>04 1x01</td>
<td>BASIC ELECTRONICS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>03 1x42</td>
<td>ELECTRICAL MACHINE-I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24 1x06</td>
<td>INDUSTRIAL ECONOMICS AND ACCOUNTANCY</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21 1x03</td>
<td>MATHEMATICS -III</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>GE 1x03</td>
<td>EAA-III-NSS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>B.TECH. (ECE) SEMESTER-IV</td>
<td>4</td>
<td>24 1x01</td>
<td>ORGANIZATIONAL BEHAVIOUR AND INDUSTRIAL PSYCHOLOGY</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>04 1x08</td>
<td>SOLID STATE PHYSICS AND DEVICES</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>04 1x01</td>
<td>BASIC ELECTRONICS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>03 1x42</td>
<td>ELECTRICAL MACHINE-I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24 1x06</td>
<td>INDUSTRIAL ECONOMICS AND ACCOUNTANCY</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>21 1x03</td>
<td>MATHEMATICS -III</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>GE 1x03</td>
<td>EAA-III-NSS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 4 05 1x01</td>
<td>OBJECT ORIENTED PROGRAMMING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 4 04 1x02</td>
<td>DIGITAL ELECTRONICS</td>
<td>3 1 2 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 4 04 1x12</td>
<td>ELECTRICAL & ELECTRONIC MATERIAL</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 4 24 1x02</td>
<td>PERSONAL MANAGEMENT & INDUSTRIAL RELATION</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 4 05 1x14</td>
<td>SOFTWARE ENGINEERING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 4 21 1x04</td>
<td>NUMERICAL METHODS & COMPUTATIONAL TECHNIQUES</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 4 GE 1x04</td>
<td>EAA-IV-NSS</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 5 04 1x03</td>
<td>INTRODUCTION TO COMMUNICATION SYSTEMS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 5 04 1x04</td>
<td>ANALOG ELECTRONICS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 5 04 1xxx</td>
<td>ELECTIVE-I</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 5 03 1x07</td>
<td>ELECTRICAL INSTRUMENTS & MEASUREMENTS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 5 03 1x11</td>
<td>MICROPROCESSOR AND ITS APPLICATIONS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 5 06 1x02</td>
<td>WEB TECHNOLOGY</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 6 04 1x05</td>
<td>OPTICAL FIBER COMMUNICATION</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 6 04 1x06</td>
<td>INTELLIGENT INSTRUMENTS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 6 04 1xxx</td>
<td>ELECTIVE – II</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 6 03 1x05</td>
<td>NETWORK THEORY</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 6 03 1x06</td>
<td>ELECTROMAGNETIC FIELD THEORY</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 6 03 1x10</td>
<td>SIGNALS & SYSTEMS</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 7 04 1x09</td>
<td>ADVANCED ELECTROMAGNETIC THEORY</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 7 04 1x10</td>
<td>DIGITAL SIGNAL PROCESSING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 7 04 1x14</td>
<td>PROJECT – I</td>
<td>0 0 9 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 7 04 1xxx</td>
<td>ELECTIVE-III</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 7 03 1x09</td>
<td>POWER ELECTRONICS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 7 04 1x15</td>
<td>INDUSTRIAL TRAINING</td>
<td>2 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 8 05 1x13</td>
<td>COMPUTER NETWORKS</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 8 04 1x11</td>
<td>MICROWAVE ENGINEERING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 8 04 1xxx</td>
<td>ELECTIVE-IV</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUG 8 03 1x12</td>
<td>LINEAR CONTROL THEORY</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ECUG 8 06 1x05</td>
<td>INFORMATION SECURITY</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECUG 8 05 1x24</td>
<td>PROJECT – II</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

B.TECH. (ECE) ELECTIVE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECUG EI – 1 04 1x61</td>
<td>MICROELECTRONICS – IC DESIGN & FABRICATION</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 1 04 1x63</td>
<td>BIO – MEDICAL SENSORS & TRANSDUCERS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 1 04 1x64</td>
<td>TV ENGINEERING</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 1 04 1x65</td>
<td>MICROCONTROLLERS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 1 04 1x81</td>
<td>CRYPTOGRAPHY & SPREAD SPECTRUM</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 2 04 1x66</td>
<td>DIGITAL SYSTEM DESIGN</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ECUG EI – 2 04 1x67</td>
<td>DIGITAL IMAGE PROCESSING</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ECUG EI – 2 04 1x68</td>
<td>BIOMEDICAL INSTRUMENTATION & IMAGING</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 2 04 1x69</td>
<td>RADIO ASTRONOMY</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 2 04 1x70</td>
<td>EMBEDDED SYSTEM DESIGN</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 2 06 1x61</td>
<td>NETWORK SECURITY</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECUG EI – 3 04 1x71</td>
<td>VLSI DESIGN</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 3 04 1x72</td>
<td>ALGORITHM DEVELOPMENT</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 3 04 1x73</td>
<td>BIOMEDICAL SYSTEM & ITS APPLICATIONS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 3 04 1x77</td>
<td>DIGITAL COMMUNICATION & TELECOMMUNICATION MANAGEMENT</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ECUG EI – 3 04 1x75</td>
<td>SOFT COMPUTING TECHNIQUES & ITS APPLICATIONS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 3 06 1x33</td>
<td>BIOMETRIC SECURITY</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 4 05 1x42</td>
<td>SPEECH PROCESSING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECUG EI – 4 04 1x76</td>
<td>IC ARCHITECTURE & FABRICATION</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 4 04 1x78</td>
<td>NANOTECHNOLOGY & ITS APPLICATIONS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 4 04 1x79</td>
<td>FIBER OPTICS & NETWORKING TECHNOLOGY</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 4 04 1x80</td>
<td>EMBEDDED SYSTEM (REAL TIME SYSTEMS)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 4 04 1x84</td>
<td>MOBILE COMPUTING</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECUG EI – 4 24 1x04</td>
<td>PERSONAL MANAGEMENT & INDUSTRIAL RELATION</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

NOTE: TOTAL CREDITS IN SOME OF SEMESTER MAY VARY DUE TO ELECTIVE SUBJECTS HAVING VARIED COMBINATION OF L-T-P.
<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSUG</td>
<td>1</td>
<td>01 1x02</td>
<td>ENVIRONMENTAL SCIENCE</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>1</td>
<td>21 1x01</td>
<td>MATHEMATICS – I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>1</td>
<td>23 1x01</td>
<td>ENGINEERING CHEMISTRY</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>1</td>
<td>01 1x01</td>
<td>ENGINEERING MECHANICS</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>1</td>
<td>02 1x01</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>1</td>
<td>02 1x03</td>
<td>WORKSHOP</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>1</td>
<td>GE 1101</td>
<td>EAA-I-NSS</td>
<td>2</td>
<td></td>
<td></td>
<td>7</td>
<td>27.0</td>
</tr>
<tr>
<td>CSUG</td>
<td>2</td>
<td>24 1x05</td>
<td>COMMUNICATIVE ENGLISH</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>2</td>
<td>21 1x02</td>
<td>MATHEMATICS-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>2</td>
<td>22 1x01</td>
<td>PHYSICS</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>2</td>
<td>03 1x01</td>
<td>BASIC ELECTRICAL ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>2</td>
<td>06 1x01</td>
<td>FUNDAMENTAL OF INFORMATION TECHNOLOGY</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>2</td>
<td>01 1x02</td>
<td>ENGINEERING GRAPHICS</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>2</td>
<td>GE 1x02</td>
<td>EAA-II-NSS</td>
<td>2</td>
<td></td>
<td></td>
<td>7</td>
<td>27.0</td>
</tr>
<tr>
<td>CSUG</td>
<td>3</td>
<td>21 1x03</td>
<td>MATHEMATICS-III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>3</td>
<td>04 1x02</td>
<td>DIGITAL ELECTRONICS</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>3</td>
<td>05 1x01</td>
<td>OBJECT ORIENTED PROGRAMMING</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>3</td>
<td>21 1x04</td>
<td>NUMERICAL METHODS & COMPUTATIONAL TECHNIQUES</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>3</td>
<td>04 1x01</td>
<td>BASIC ELECTRONICS</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>3</td>
<td>GE 1x03</td>
<td>EAA-III-NSS</td>
<td>2</td>
<td></td>
<td></td>
<td>7</td>
<td>24.0</td>
</tr>
<tr>
<td>CSUG</td>
<td>4</td>
<td>21 1x05</td>
<td>DISCRETE MATHEMATICAL STRUCTURE & GRAPH THEORY</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Year</td>
<td>Code</td>
<td>Course Name</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>---</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>4</td>
<td>04</td>
<td>ANALOG ELECTRONICS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>4</td>
<td>05</td>
<td>DATA STRUCTURES</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>4</td>
<td>05</td>
<td>COMPUTER ARCHITECTURE</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>4</td>
<td>05</td>
<td>SYSTEMS PROGRAMMING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>4</td>
<td>24</td>
<td>ORGANIZATIONAL BEHAVIOUR AND INDUSTRIAL PSYCHOLOGY</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>4</td>
<td>GE</td>
<td>EAA-IV-NSS</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.TECH. (CSE) SEMESTER-V

<table>
<thead>
<tr>
<th>Code</th>
<th>Year</th>
<th>Year Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSUG</td>
<td>5</td>
<td>03</td>
<td>MICROPROCESSOR AND ITS APPLICATIONS</td>
<td>3 0 3 5</td>
</tr>
<tr>
<td>CSUG</td>
<td>5</td>
<td>05</td>
<td>DESIGN & ANALYSIS OF ALGORITHMS</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>CSUG</td>
<td>5</td>
<td>05</td>
<td>INTRODUCTION TO JAVA PROGRAMMING LANGUAGE</td>
<td>3 0 3 5</td>
</tr>
<tr>
<td>CSUG</td>
<td>5</td>
<td>05</td>
<td>DATABASE SYSTEMS</td>
<td>3 0 3 5</td>
</tr>
<tr>
<td>CSUG</td>
<td>5</td>
<td>06</td>
<td>OPERATING SYSTEMS</td>
<td>3 0 3 5</td>
</tr>
<tr>
<td>CSUG</td>
<td>5</td>
<td>05</td>
<td>COMPUTER NETWORKS</td>
<td>3 0 0 3 26.0</td>
</tr>
</tbody>
</table>

B.TECH. (CSE) SEMESTER-VI

<table>
<thead>
<tr>
<th>Code</th>
<th>Year</th>
<th>Year Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSUG</td>
<td>6</td>
<td>05</td>
<td>OBJECT ORIENTED ANALYSIS & DESIGN</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>CSUG</td>
<td>6</td>
<td>05</td>
<td>PRINCIPLES OF PROGRAMMING LANGUAGES</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>CSUG</td>
<td>6</td>
<td>05</td>
<td>FORMAL LANGUAGES & AUTOMATA THEORY</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>CSUG</td>
<td>6</td>
<td>24</td>
<td>INDUSTRIAL ECONOMICS & ACCOUNTANCY</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>CSUG</td>
<td>6</td>
<td>05</td>
<td>SOFTWARE ENGINEERING</td>
<td>3 0 3 5</td>
</tr>
<tr>
<td>CSUG</td>
<td>6</td>
<td>05</td>
<td>WEB APPLICATIONS DESIGN & DEVELOPMENT</td>
<td>3 0 3 5</td>
</tr>
<tr>
<td>CSUG</td>
<td>6</td>
<td>05</td>
<td>COMPILER DESIGN</td>
<td>3 0 3 5 28.0</td>
</tr>
<tr>
<td>CSUG</td>
<td>7</td>
<td>05</td>
<td>DISTRIBUTED COMPUTING</td>
<td>3 0 3 5</td>
</tr>
<tr>
<td>CSUG</td>
<td>7</td>
<td>05</td>
<td>ARTIFICIAL INTELLIGENCE</td>
<td>3 0 3 5</td>
</tr>
<tr>
<td>CSUG</td>
<td>7</td>
<td>XX</td>
<td>ELECTIVE-I</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>CSUG</td>
<td>7</td>
<td>XX</td>
<td>ELECTIVE-II</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>CSUG</td>
<td>7</td>
<td>XX</td>
<td>ELECTIVE-III</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Semester</td>
<td>Title</td>
<td>Credits</td>
<td>ECTS</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>CSUG 7</td>
<td>05 1x20</td>
<td>PROJECT – I</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>CSUG 7</td>
<td>05 1x21</td>
<td>INDUSTRIAL TRAINING</td>
<td>2</td>
<td>25.0</td>
</tr>
</tbody>
</table>

B.TECH. (CSE) SEMESTER-VIII

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Semester</th>
<th>Title</th>
<th>Credits</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSUG 8</td>
<td>05 1x22</td>
<td>DATA MINING</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG 8</td>
<td>24 1x04</td>
<td>PERSONAL MANAGEMENT & INDUSTRIAL RELATION</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG 8</td>
<td>06 1x05</td>
<td>INFORMATION SECURITY</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG 8</td>
<td>XX 18XX</td>
<td>ELECTIVE-IV</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG 8</td>
<td>XX 18XX</td>
<td>ELECTIVE-V</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG 8</td>
<td>XX 1xxx</td>
<td>ELECTIVE-VI</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG 8</td>
<td>05 1x24</td>
<td>PROJECT – II</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

B.TECH. (CSE) ELECTIVE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Semester</th>
<th>Title</th>
<th>Credits</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSUG EI</td>
<td>05 1x02</td>
<td>FUNDAMENTALS OF DATA COMMUNICATION</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x12</td>
<td>REAL TIME SYSTEMS</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x18</td>
<td>CRYPTOGRAPHY</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x19</td>
<td>MOBILE & WIRELESS COMPUTING</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x22</td>
<td>DISTRIBUTED DATABASE</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x23</td>
<td>PARALLEL COMPUTING</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x25</td>
<td>ADVANCE COMPUTER ARCHITECTURE</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x26</td>
<td>PERFORMANCE EVALUATION OF COMPUTER SYSTEMS</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x27</td>
<td>OPTIMIZATION THEORY</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x28</td>
<td>PATTERN RECOGNITION</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x30</td>
<td>GENETIC ALGORITHM</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x31</td>
<td>NATURAL LANGUAGE PROCESSING</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x32</td>
<td>COMPUTATIONAL GEOMETRY</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x35</td>
<td>COMPUTER GRAPHICS</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CSUG EI</td>
<td>05 1x41</td>
<td>NEURAL</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>Title</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>NETWORKS & ITS APPLICATIONS</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>SPEECH PROCESSING</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>OPERATIONS RESEARCH</td>
<td>3 1 0 4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>COMPUTER AIDED DESIGN & MANUFACTURING</td>
<td>3 0 3 5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>ROBOTICS AND ROBOT APPLICATIONS</td>
<td>3 1 0 4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>GEOGRAPHICAL INFORMATION SYSTEMS & REMOTE SENSING</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>COMPUTER AIDED DESIGN</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>INTRODUCTION TO COMMUNICATION SYSTEMS</td>
<td>3 0 3 5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>INTELLIGENT INSTRUMENTS</td>
<td>3 0 3 5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>MICROELECTRONIC S – IC DESIGN & FABRICATION</td>
<td>3 1 0 4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>MICROCONTROLERS</td>
<td>3 1 0 4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>DIGITAL IMAGE PROCESSING</td>
<td>3 0 3 5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>EMBEDDED SYSTEM DESIGN</td>
<td>3 1 0 4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>VLSI DESIGN</td>
<td>3 1 0 4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EI</td>
<td>DIGITAL COMMUNICATION & TELECOMMUNICATION MANAGEMENT</td>
<td>3 0 3 5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EL</td>
<td>NANOTECHNOLOGY & ITS APPLICATIONS</td>
<td>3 1 0 4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EL</td>
<td>FIBER OPTICS & NETWORKING TECHNOLOGY</td>
<td>3 1 0 4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EL</td>
<td>MOBILE COMPUTING</td>
<td>3 1 0 4</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EL</td>
<td>VISUAL PROGRAMMING</td>
<td>3 0 3 5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EL</td>
<td>INTRUSION DETECTION</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EL</td>
<td>XML WEB SERVICES</td>
<td>3 0 3 5</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EL</td>
<td>MULTIMEDIA TECHNOLOGY & ITS APPLICATIONS</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>EL</td>
<td>NETWORK SECURITY</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Semester</td>
<td>Course code</td>
<td>Course title</td>
<td>L</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>----</td>
</tr>
<tr>
<td>CSUG EL</td>
<td>06 1x17</td>
<td>INTERNET & INTRANET ENGINEERING</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSUG EL</td>
<td>06 1x18</td>
<td>E – COMMERCE & ERP</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSUG EL</td>
<td>06 1x19</td>
<td>IMAGE PROCESSING & GIS</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOGY

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.TECH. (IT) SEMESTER-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITUG</td>
<td>1</td>
<td>01 1x02</td>
<td>ENVIRONMENTAL SCIENCE</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ITUG</td>
<td>1</td>
<td>21 1x01</td>
<td>MATHEMATICS – I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ITUG</td>
<td>1</td>
<td>23 1x01</td>
<td>ENGINEERING CHEMISTRY</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ITUG</td>
<td>1</td>
<td>01 1x01</td>
<td>ENGINEERING MECHANICS</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ITUG</td>
<td>1</td>
<td>02 1x01</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ITUG</td>
<td>1</td>
<td>GE 1x01</td>
<td>WORKSHOP</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.TECH. (IT) SEMESTER-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITUG</td>
<td>2</td>
<td>24 1x05</td>
<td>COMMUNICATIVE ENGLISH</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ITUG</td>
<td>2</td>
<td>21 1x02</td>
<td>MATHEMATICS-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ITUG</td>
<td>2</td>
<td>22 1x01</td>
<td>PHYSICS</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ITUG</td>
<td>2</td>
<td>03 1x01</td>
<td>BASIC ELECTRICAL ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ITUG</td>
<td>2</td>
<td>06 1x01</td>
<td>FUNDAMENTAL OF INFORMATION TECHNOLOGY</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ITUG</td>
<td>2</td>
<td>01 1x02</td>
<td>ENGINEERING GRAPHICS</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>ITUG</td>
<td>2</td>
<td>GE 1x02</td>
<td>EAA-II-NSS</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.TECH. (IT) SEMESTER-III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITUG</td>
<td>3</td>
<td>24 1x01</td>
<td>ORGANIZATIONAL BEHAVIOUR AND INDUSTRIAL PSYCHOLOGY</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ITUG</td>
<td>3</td>
<td>05 1x01</td>
<td>OBJECT ORIENTED PROGRAMMING</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ITUG</td>
<td>3</td>
<td>04 1x01</td>
<td>BASIC ELECTRONICS</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>ITUG</td>
<td>3</td>
<td>04 1x02</td>
<td>DIGITAL ELECTRONICS</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>ITUG</td>
<td>3</td>
<td>24 1x06</td>
<td>Industrial Economics and Accountancy</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ITUG</td>
<td>3</td>
<td>21 1x03</td>
<td>MATHEMATICS-III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ITUG</td>
<td>3</td>
<td>GE 1x03</td>
<td>EAA-III-NSS</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.TECH. (IT) SEMESTER-IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITUG</td>
<td>4</td>
<td>21 1x05</td>
<td>DISCRETE MATHEMATICAL</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Year Semester</td>
<td>Course Code</td>
<td>Course Title</td>
<td>Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Tech. (IT)</td>
<td>ITUG 03 1x11</td>
<td>STRUCTURE & GRAPH THEORY</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester-V</td>
<td>ITUG 05 1x09</td>
<td>MICROPROCESSOR AND IT SYSTEMS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 04 1x04</td>
<td>ANALOG ELECTRONICS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 05 1x02</td>
<td>COMPUTER ARCHITECTURE</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 05 1x03</td>
<td>DATA STRUCTURES</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG GE 1x04</td>
<td>EAA-IV-NSS</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 03 1x11</td>
<td>FORMAL LANGUAGES & AUTOMATA THEORY</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 04 1x03</td>
<td>INTRODUCTION TO COMMUNICATION SYSTEMS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 05 1x16</td>
<td>COMPILER DESIGN</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x02</td>
<td>WEB TECHNOLOGY</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 05 1x13</td>
<td>COMPUTER NETWORKS</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 05 1x05</td>
<td>SYSTEMS PROGRAMMING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 05 1x17</td>
<td>ARTIFICIAL INTELLIGENCE</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x04</td>
<td>VISUAL PROGRAMMING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 05 1x14</td>
<td>SOFTWARE ENGINEERING</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x06</td>
<td>DATA MINING & WAREHOUSING</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x03</td>
<td>OPERATING SYSTEMS</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 05 1x06</td>
<td>DESIGN & ANALYSIS OF ALGORITHMS</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x02</td>
<td>Personnel Management and Industrial Relation</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x07</td>
<td>Distributed Computing and its Application</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x11</td>
<td>Wireless and Mobile Communication</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x05</td>
<td>Information security</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1xxx</td>
<td>Elective I</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1xxx</td>
<td>Elective –II</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x24</td>
<td>Project-I</td>
<td>0 0 6 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x26</td>
<td>Industrial Training</td>
<td>2 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITUG 06 1x09</td>
<td>XML Web Services</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Semester</td>
<td>Course Code</td>
<td>Course Title</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Credits</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>MEUG</td>
<td>3</td>
<td>24 1x01</td>
<td>ORGANIZATIONAL BEHAVIOUR AND INDUSTRIAL PSYCHOLOGY</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>LTUG</td>
<td>3</td>
<td>07 1x01</td>
<td>Theory & Practices of preservation and pre tanning processes</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG</td>
<td>3</td>
<td>01 1x05</td>
<td>Material Science</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MEUG</td>
<td>3</td>
<td>21 1x03</td>
<td>Mathematics –III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MEUG</td>
<td>3</td>
<td>02 1x06</td>
<td>Strength of material</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MEUG</td>
<td>3</td>
<td>02 1x07</td>
<td>Thermodynamics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MEUG</td>
<td>3</td>
<td>GE 1x03</td>
<td>EAA-III- NSS</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEUG 4 04 1x01</td>
<td>Basic Electronics</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEUG 4 05 1x01</td>
<td>Object Orientation Programming</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEUG 4 21 1x04</td>
<td>Numerical methods and computational technique</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 4 07 1x02</td>
<td>Introduction to leather Technology</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 4 07 1x03</td>
<td>Biochemistry of protein</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEUG 4 GE 1x04</td>
<td>EAA-IV- NSS</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEUG 5 24 1x02</td>
<td>Personnel management and Industrial relation</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 5 07 1x05</td>
<td>Chemical Engineering - II</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 5 07 1x06</td>
<td>Principles of Inorganic Tannage</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 5 07 1x07</td>
<td>Principles of Organic Tannage</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 5 07 1x08</td>
<td>Practices of Leather Manufacturing - I</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 5 07 1x09</td>
<td>Analytical Chemistry of Leather</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEUG 6 24 1x06</td>
<td>Industrial Economics& Accountancy</td>
<td>3 1 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 6 07 1x10</td>
<td>Principles of Post Tanning Operation</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 6 07 1x11</td>
<td>Leather Bio-Technology</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 6 07 1x12</td>
<td>Leather Product Technology- I</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 6 07 1x13</td>
<td>Principles of material testing</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 6 07 1x14</td>
<td>Chemical Engineering –III</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEUG 7 07 1x15</td>
<td>Leather finishing materials and Auxiliaries</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x16</td>
<td>Electives –I</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x17</td>
<td>Practices of Leather manufacturing -II</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x18</td>
<td>Theory of Leather supplements & Synthetics</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x19</td>
<td>Instrumentation and process control</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x20</td>
<td>Leather Product Technology-II</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x21</td>
<td>Elective –II</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x22</td>
<td>Elective –III</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x23</td>
<td>Tannery waste management</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x24</td>
<td>Practices of Leather manufacturing -III</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x25</td>
<td>Leather Product Technology –III</td>
<td>3 0 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 8 07 1x26</td>
<td>Project Work</td>
<td>0 1 6 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTUG 7 07 1x26</td>
<td>Project Work</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Practicals :-
Eight experiments based on the theory papers in the relevant semesters.

Elective – I
07 1x16 Animal and tannery by product utilization. (LTE 1.1)
07 1x16 Polymer Science & Technology. (LTE 1.2)
07 1x16 Co-ordination Chemistry. (LTE 1.3)
07 1x16 Organic Chemistry. (LTE 1.4)

Elective – II
07 1x21 Fashion styling and Computer added design of leather product. (LTE 2.5)
07 1x21 Advance Leather process technology. (LTE 2.6)
07 1x21 Applied statistics & quality control. (LTE 2.7)
07 1x21 Surface and colloid chemistry (LTE 2.8)

Elective – III
07 1x22 Computer application in leather technology. (LTE 3.9)
07 1x22 Professional Ethics. (LTE 3.10)
07 1x22 Entrepreneurship. (LTE 3.11)
07 1x22 Total quality management. (LTE 3.12)

B.Pharm SEMESTER-I

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSUG</td>
<td>1</td>
<td>24 1105</td>
<td>COMMUNICATIVE ENGLISH</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>1</td>
<td>09 1101</td>
<td>PHARMACEUTICS-I</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>1</td>
<td>09 1102</td>
<td>PHARMACEUTICAL ANALYSIS – I</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>1</td>
<td>09 1103</td>
<td>PHARMACEUTICAL CHEMISTRY – I</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>1</td>
<td>09 1104</td>
<td>PHARMACOGNOSY - I</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>1</td>
<td>09 1106</td>
<td>REMEDIAL MATHEMATICS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>1</td>
<td>09 1107</td>
<td>REMEDIAL BIOLOGY</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>26</td>
</tr>
</tbody>
</table>

Candidates who did not pass Biology subject in entry qualification (+2 Sc. etc.) examination are required to take Remedial Biology (09 1107 & 09 1107P), and those who did not pass Mathematics subject are required to take Remedial Mathematics (09 1106). Candidates who passed both Biology and Mathematics subjects can take either Remedial Biology (T&P) or Remedial Mathematics.

B.Pharm SEMESTER-II

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSUG</td>
<td>2</td>
<td>09 1105</td>
<td>ADVANCED MATHEMATICS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>2</td>
<td>09 1201</td>
<td>PHARMACEUTICS-II</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Semester</td>
<td>Course code</td>
<td>Course title</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Credits</td>
<td>Total Credit/ Sem.</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>PSUG</td>
<td>2</td>
<td>09 1202</td>
<td>PHARMACEUTICAL CHEMISTRY – II</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>2</td>
<td>09 1203</td>
<td>PHARMACEUTICAL CHEMISTRY – III</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>2</td>
<td>09 1204</td>
<td>APHE-I</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

B.Pharm SEMESTER-III

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/ Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSUG</td>
<td>3</td>
<td>09 1301</td>
<td>PHARMACEUTICS-III</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>3</td>
<td>09 1302</td>
<td>PHARMACEUTICAL CHEMISTRY – IV</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>3</td>
<td>09 1303</td>
<td>PHARMACOGNOSY - II</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>3</td>
<td>09 1304</td>
<td>PHARMACEUTICAL ANALYSIS – II</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>3</td>
<td>09 1305</td>
<td>APHE-II</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

B.Pharm SEMESTER-IV

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/ Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSUG</td>
<td>4</td>
<td>09 1401</td>
<td>PHARMACEUTICS-IV</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>4</td>
<td>09 1402</td>
<td>PHARMACEUTICAL Microbiology</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>4</td>
<td>09 1403</td>
<td>PHARMACOGNOSY - II</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>4</td>
<td>09 1404</td>
<td>PATHOPHYSIOLOGY OF COMMON DISEASES</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>4</td>
<td>09 1405</td>
<td>BASIC ELECTRONICS AND COMPUTER APPLICATIONS</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>4</td>
<td>09 1406</td>
<td>PHARMACEUTICAL JURISPRUDEANCE & ETHICS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

B.Pharm SEMESTER-V

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/ Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSUG</td>
<td>5</td>
<td>09 1501</td>
<td>PHARMACEUTICS-V</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>5</td>
<td>09 1502</td>
<td>PHARMACEUTICAL CHEMISTRY – V</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>5</td>
<td>09 1503</td>
<td>PHARMACOLOGY - I</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>5</td>
<td>09 1504</td>
<td>PHARMACOGNOSY-IV</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>5</td>
<td>09 1505</td>
<td>PHARMACEUTICS-VI</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
B.Pharm SEMESTER-VI

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSUG</td>
<td>6</td>
<td>09 1601</td>
<td>PHARMACEUTICS-VII</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>6</td>
<td>09 1602</td>
<td>PHARMACEUTICAL CHEMISTRY – VI</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>6</td>
<td>09 1603</td>
<td>PHARMACOLOGY - II</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>6</td>
<td>09 1604</td>
<td>PHARMACOGNOSY-V</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>6</td>
<td>09 1605</td>
<td>PHARMACEUTICAL ANALYSIS-III</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

B.Pharm SEMESTER-VII

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSUG</td>
<td>7</td>
<td>09 1701</td>
<td>PHARMACEUTICS-VIII</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>7</td>
<td>09 1702</td>
<td>PHARMACEUTICAL CHEMISTRY-VII</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>7</td>
<td>09 1703</td>
<td>PHARMACOLOGY - III</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>7</td>
<td>09 1704</td>
<td>PHARMACEUTICAL BIOTECHNOLOGY</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>7</td>
<td>09 1705</td>
<td>PHARMACEUTICAL INDUSTRIAL MANAGEMENT</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>7</td>
<td>09 1706</td>
<td>ELECTIVE</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

B.Pharm SEMESTER-VIII

<table>
<thead>
<tr>
<th>Program</th>
<th>Semester</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Credit/Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSUG</td>
<td>8</td>
<td>09 1801</td>
<td>PHARMACEUTICS-IX</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>8</td>
<td>09 1802</td>
<td>PHARMACEUTICAL CHEMISTRY – VIII</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>8</td>
<td>09 1803</td>
<td>PHARMACOLOGY - IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>8</td>
<td>09 1804</td>
<td>PHARMACOGNOSY-VI</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSUG</td>
<td>8</td>
<td>09 1805</td>
<td>PROJECT WORK & VIVA VOCE</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>10</td>
<td>28</td>
</tr>
</tbody>
</table>

PRACTICALS

Eight experiments based on the theory papers in the relevant semesters.

ELECTIVES THEORY AND PRACTICAL

- 09 17E1 COSMETIC TECHNOLOGY
- 09 17E2 HERBAL DRUG TECHNOLOGY
- 09 17E3 BIOASSAYS
- 09 17E4 HOSPITAL PHARMACY ADMINISTRATION
- 09 17E5 ADVANCED PHARMACEUTICAL ANALYSIS
DEPARTMENT OF MATHEMATICS

21 1x01 MATHEMATICS-I
L-T-P : 3-1-0 Credit : 4
1. ALGEBRA OF MATRICES : Elementary transformation, inverse by row transformation, canonical reduction, rank, solution of simultaneous equations, characteristic equation, Eigen values – & Eigen vectors, Caley's Hamilton theorem, similarity transformation, reduction to diagonal matrices. Lecture : 8
2. DIFFERENTIAL CALCULUS : Higher order derivatives (successive differentiation) and Leibnitz theorem, indeterminate form, Tangent and normal, review of maxima & minima, concavity and convexity of a curve point of inflexion, curvature and radius of curvature, pedal equation asymptotes (for Cartesian curve only) Taylor's and Maclaurin's series, partial derivatives, Euler's theorem on homogeneous function, harmonic function, Taylor's expansion of several variables, maxima and minima of several variables, Lagrange's method for undetermined multipliers. Lecture : 20
3. DIFFERENTIAL EQUATION : First order equation, separable, homogeneous, exact, linear and Bernoulli's form, second and higher order equation with constant coefficients, Euler's equation: methods of their solution, dependent and independent of solution, Wronskian's system of first order equation. Lecture : 8

Text Books :
1. Advance engineering mathematics by H.K.Dass, S.Chand & Company Ltd.
2. Higher engineering mathematics by B.S. Grewal, Khanna Publishers
3. Differential calculus by Das & Mukherjee – U.N. Dhar & sons
4. Integral calculus by Das & Mukherjee – U.N. Dhar & sons

Reference Books :
3. Linear Algebra by K. Hoffman and R Kunze-Prentice Hall

21 1x02 MATHEMATICS –II
L-T-P : 3-1-0 Credit : 4
3. INTEGRAL CALCULUS II : Double & Triple integrals, Rectification, computation of surfaces & volumes, Change of variables in double integrals, Jacobians of transformations, Integrals dependent on parameters-applications. Lecture : 12
4. VECTOR CALCULUS : Scalar & vector point function, differentiation of vector, velocity and acceleration, direct derivatives, concept of gradient, divergence curl, line integral, Greens theorem in plane, Gauss & Stoke's theorem and simple application. Lecture : 12

Text Books :
2. Higher engineering mathematics by Wiley & Barrett-Tata McGraw hill

Reference Books :
3. Vector analysis 2nd edition by Chatterjee, Prentice Hall of India

21 1x03 MATHEMATICS – III
L-T-P: 3-1-0 Credit : 4
1. **ORDINARY DIFFERENTIAL EQUATIONS & SPECIAL FUNCTIONS**: Series solution of differential equations (Frobenious method), Bessel's equation, Its solution, Bessel's function of first & second kind, Recurrence formula, Legendre's equation, Its solution, Legendre polynomials, Rodrigue's formula, Orthogonality of Legendre polynomial.

2. **PARTIAL DIFFERENTIAL EQUATION**: Basic concept, 1st & 2nd order linear & quasi – linear partial differential equation, Classification of second order P.D.E., Boundary and initial conditions, wave equations, Separation of variables, use of fourier series, D’Alembert’s solution of wave equation, Heat equation, Solution by fourier series.

3. **COMPLEX ANALYSIS - I**: Function of complex variables – limit, continuity, differentiability and analyticity of functions Cauchy-Riemann equations, Laplace’s equation, harmonic function, Cauchy’s integral theorem, Cauchy’s integral formula, Taylor’s and Laurant series, Residues and its applications to evaluating real integrals.

4. **PROBABILITY & STATISTICS**: Theorems on probability, including Baye’s rule, Random variable – cumulative distribution function, Probability mass function, probability density function, Mathematical expectation, mean variance, moment, generating function & characteristics function, standard probability models Binomials, Poisson exponential, Weibull, normal and lognormal, sampling & sampling distribution, Chi-square and F distributions, large and small sample tests of significance.

Text Books:
2. Higher engineering mathematics by B.S. Grewal

References:
2. Complex variable and applications by Churchill & Brown –McGraw hill

NUMERICAL METHOD & COMPUTATIONAL TECHNIQUE

L-T-P : 3-1-0
Credit : 4

1. **Introduction to computer language**: Machine language, assembly language, higher level language, compilers, problem solving using computer algorithm, flow chart, examples.

2. **C/C++ Programming**: Constant & variables, arithmetic expression, I/O statement, specification statement, control statements, subscripted variables, logical expression, function and subroutines, examples of programming should include numerical as well as non numeric applications, matrix operations, searching , sorting etc.

3. **Iterative Techniques for solution of equations**:
 i. **Solution of non linear equation** - Simple iteration scheme, Bisection method, Regula-falsi method, Newton - Raphson method, Secant method, their rates of convergence, order of errors etc.
 ii. **Solution of linear equation** – Gaussian elimination, matrix inversion by Gaussian method, computation of determinants, Jacobi and Gauss Seidel iteration method.

4. **Polynomial approximation**: Interpolation, several form of interpolating polynomials like Lagrangian interpolation of polynomial and Newtons forward and backward difference formula, curve fitting(least square) .

5. **Numerical integration**: Trapezoidal method, Simpson’s rule, order of errors in integration.

6. **Solution of initial value problem**: Euler's method, Runge-Kutta second order and fourth order methods, solution of boundary value problem - Finite difference method.

Text Books:

Reference Books:
UNIT-I:
Mathematical Logic and Set Theory: Statement and Notation, Negotiation, Conjunction, Disjunction, Tautologies, Truth tables, Basic concepts of set theory, Inclusion and equality of sets, The power set, Ordered pairs and n-tuples.

UNIT-II:

UNIT-III:
Group Theory: Semigroups and Monoids (definitions and examples), Homomorphism of semigroups and monomoids, Subsemi groups and submonoids, Groups (definitions and examples) Subgroups and Homomorphisms, Cosets and Lanranges theorem, Normal subgroups, Codes and group codes.

UNIT-IV:
Rings (definition and examples): Integral domains ring homomorphisms, Ideas of Ring polynomial.

UNIT-V:
Graph Theory: Basic concepts of Graph Theory, Basic definitions, Paths and circuits. Reachability and connectedness, Matrix representation of graphs, Trees and their representation and operations, Rooted trees, Path lengths in rooted trees, Multi graphs and weighted graphs, Shortest paths in weighted graphs.

TEXT BOOKS:

REFERENCES:
Elements of Discrete Mathematics by C. L. Liu.
Discrete Mathematics by Lipschutz
Discrete Mathematics by R. Johnsonbaugh.

DEPARTMENT OF PHYSICS
21 1x05 DISCRETE MATHEMATICAL STRUCTURE & GRAPH THEORY
L-T-P : 3-1-0

UNIT-I:

UNIT-II:

UNIT-III:
Polarisation: Unpolarised light, Production of plane polarised light by Polaroid technique (Principle of action should be emphasized) Brewster’s Law, Malu’s Law, Double Refraction, Production of Plane, Circular and elliptical, Polarized Light, Analysis of unpolarised light and polarized light, Magneto-optic effect, electro optic effect and photo elastic effect.

UNIT-IV:
Quantum Physics: Planck’s theory of black body radiation, Compton effect, Photo electric effect, Einstein photo electric equation and its experimental verification. Wave particle duality, De-Broglie waves, De-Broglie wave velocity, Wave and group velocity, Division and Germer experiment, Heisenberg’s uncertainty principle, Application of uncertainty principle. Wave functions and wave equation, physical interpretation of wave function and normalization condition, Expectation values, Schrodinger’s wave equation (Time dependent and time independent i.e. steady, state form) in one dimension, quantum-mechanical operators, Particle in a box (Infinite Potential Well), Finite Potential barrier and tunneling.
5. SPECIAL THEORY OF RELATIVITY: Michelson-Morely experiment, Postulates of special theory of relativity, Consequence of special theory of relativity, Lorentz transformation and its application. (Length contraction and time dilation)

Text Books:
1. Concept of Modern Physics by Arthur Beiser: Publication: TMH
2. Elements of electromagnetics by Mathew N.O. Sadiku: Publication: Oxford University Press
3. Introduction to electrodynamics by David J. Griffiths; Pub.: Pearson Education.
4. Optics by Ajoy Ghatak Pub: TMH

Reference Books:
3. Lasers and Non-Linear Optics by B.B. Laud; Pub: New Age International (P) Ltd.

22 1X01 PHYSICS LABORATORY

Minimum eight experiments are required to be performed in a semester:
1. To determine acceleration due to gravity by a Bar Pendulum.
2. To determine input & output characteristics of a PNP Junction Transistor in CE Mode or configuration.
3. To determine Planck’s constant.
4. To determine capacitance and permittivity.
5. To measure the numerical aperture of an optical fiber.
6. To obtain the wave length of laser source using grating.
7. To obtain the particle size by Laser
8. To obtain forbidden energy gap of Semiconductor Diode.
9. To obtain loss of energy from transformer and ferrites.
10. To obtain Dielectric constant.
11. To obtain Curie temperature
12. To obtain focal length by Convex mirror using u-v method.

DEPARTMENT OF CHEMISTRY
23 1x01 ENGINEERING CHEMISTRY

L-T-P: 3-0-3 Credit: 5

Lecture: 7

Lecture: 7

Lecture: 7

4. FUELS: Definition, Classification,
 ANALYSIS OF COAL: Proximate and ultimate analysis of coal.
 SYNTHESIS OF PETROL: Bergius process and Fischer Tropsch process.
 CALORIFIC VALUE: Definition, Gross and net calorific value, Determination of calorific value of solid/liquid fuel using Bomb calorimeter.
 COMBUSTION CALCULATION: Analysis of flue gas by Orsat's apparatus.

Numerical problems.
5. **HIGH POLYMERS** : Definition, Classification – Natural and synthetic polymers with examples.

POLYMERIZATION : Definition, Types of polymerizations, addition and condensation with examples, Mechanism of Polymerization - Free radical mechanism (ethylene as an example),

Glass transition temperature, Compounding of resins synthesis – Property and application of Teflon, PMMPA and Phenol Formaldehyde Resin.

Lecture : 7

Lecture : 7

23 1X01 CHEMISTRY LABORATORY

1. To determine the mol. wt. of a non-volatile substance “urea) by Lands Berger’s method/Cottrells’ method.
2. To determine the apparent molecular weight of a non-volatile substance (boric acid) in benzene and to determine its degree of association.
3. To determine the velocity constant of hydrolysis of methyl acetate catalyset by HCl
4. To determine the velocity constant of inversion of cane sugar by acids.
5. To determine the total order of reaction between oxalic acid and chromic acid.
6. To determine electrode potential \((E^0) \) of Ag/Ag\(^+\) or Cu/Cu\(^{2+}\) or Zn/Zn\(^{2+}\).
7. To study concentration cells and hence to determine the value of 2.303RTF=k
8. To estimate Hardness of Water
9. To determine pH of Solution
10. Quantitative Analysis of different ions in inorganic salt mixtures.
11. Test of Adulteration in fat, butter, sugar, turmeric powder, chili powder and pepper.
12. Determination of Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD) of value of sewage volumetrically.
14. Test of different organic substances and their functional groups.
15. Analysis of flue gas by Orsat apparatus.
16. To determine the viscosity of a liquid or solution.

Text Books :

1. Chemistry in engineering and technology ; vol-I and II, by J. C. Kuriacose and J.Rajram; Pub.: TMH
2. Engineering chemistry; by Jain and Jain; Pub: Dhanpat Rai Publication
4. Engineering chemistry by B. K. Sharma; Pub.: Krishna Prakashan Media (P) Ltd.
DEPARTMENT OF HUMANITIES & SOCIAL SCIENCE

24 1301 ORGANIZATIONAL BEHAVIOR & INDUSTRIAL PSYCHOLOGY

L-T-P : 3-0-0 Credit : 3
1. Concept of organization & organizational Behavior. Lecture : 2
2. (a) Personality : meaning, concept, determinants, personality theories (psychoanalytic Theory, Trait Theory and Self Theory).
 (b) Perception - meaning, concept, process of perception, significance of perception.
 (c) Learning - meaning, concept, nature, component of learning process.
 (d) Attitude - meaning, concept, factors in attitude formation, method of finding Employee’s attitude.
 (e) Value - Meaning and types, value and attitude – similarity and difference.
 (f) Motivation - meaning, theory of motivation (Maslow’s Theory & Herzberg’s Theory).
 Lecture : 11

3. (a) Group & Group Dynamics - concept, importance, classification of groups, reason for group, formation, group cohesiveness.
 (b) Team work - meaning, concept, types, creating, an effective team.
 Lecture : 4

4. (a) Communication - concept, process, importance, barrier.
 (b) Organizational conflict - meaning, concept, types, stages of conflict, resolution of conflict.
 (c) Power & politics - nature and concept, Ethics of power & politics, types of power.
 (d) Leadership - concept, qualities and functions of a leader, approaches to the analysis of leadership
 Lecture : 8

5. Concept of organization theory, concept of organization structure, form of organizational structure, form of organizational culture.
 Lecture : 7

6. (a) Organizational effectiveness - concept, approaches, criteria of effectiveness.
 (b) Organizational change - meaning, factors in Organizational change, process of planned change.
 (c) Organizational Development - concept, need of organizational development, difference between organizational development & management development.
 Lecture : 7

Text Books :
1. Organizational behavior by Stephen P. Robbin & Seema Sanghi - pearson
2. Organizational behavior by L.M. Prasad-S Chand & sons

Reference Book :
1. Organization behavior: managing people and organization by Gregory moorehead – Biztantra
2.

24 1X02 PERSONNEL MANAGEMENT AND INDUSTRIAL RELATION

L-T-P: 3-0-0 Credits: 3
1. Meaning, concept, function, & importance of personnel management, role of a personnel manager, personnel policies - Need of a personnel policies, organization of personnel Department (functional basis, service basis and centile basis)
 Lecture : 5
2. Manpower planning : Meaning & concept, need for manpower planning, types of manpower planning, meaning and concept of job analysis, job description & job specification, uses of job analysis information, Recruitment, selection – meaning and steps of selection process, meaning of induction
 Lecture : 8
3. Training and develop : Meaning, need & importance for training, method of training, development - meaning of development, method of development.
 Lecture : 5
4. (a) Performance appraised : Meaning, Objective, method of performance appraisal .
 (b) Transfer : meaning objective, types.
 (c) Promotion : Meaning, policies, basis of promotion.
5. Wages and salary administration:
 (a) Meaning, purpose, and principle of wage & salary administration, factors influencing wage & salary administration.
 (b) Meaning of wage & salary, minimum wage, fair wage & living wage.
 (c) Meaning of money and real wage.
 (d) Methods of wage payment - time rate & piece rate.
 (e) Incentive - financial incentive & non-financial incentive, method of wage payment based on result.

6. (a) Health, safety and welfare facilities.
 (b) Social security -
 (i) meaning and concepts, objective.
 (ii) form of social security - social insurance & social assistance.
 (c) Problem arising from disease, invalidity, accident, old age and unemployment.

7. (a) Industrial Relation: meaning & concept, changing concept of industrial relation, role played by the employer, trade union & government, current I.R. position in India, I.R. policies of government of India.
 (b) Trade Union: Meaning and concept, objective, functions, type, method of trade union.

Text Books:
1. Personal management by C.B. Memoria & G.V. Gankar - Himalaya
2. Personal management & industrial relation by P.C. Tripathi - S.chand

Reference Book:

24 1X03 SOCIOLOGY AND BUILDING ECONOMICS

L-T-P: 2-1-0 Credit: 3
1. Definition scope and use of sociology, its application in architecture. Lecture: 2
2. Basic concept of sociology, society, groups, community association, institution, culture, civilization and personality in terms of their characteristics and types. Lecture: 5
3. Social structure of India: Caste and class and marriage and family, their characteristics. Lecture: 5
4. Rural and urban societies: Their characteristics, features and problem, like crime, slum and poverty. Lecture: 5
5. Social change: Biological, technological, and cultural factors of social changes, social aspects of housing and neighbourhood in the context of changing society and growing populations. Lecture: 4
6. Elements of economics: Concept of utility, total utility, and avg. utility, law of equimarginal utility, concept of demand - factors governing demand for building. Lecture: 4
7. Production: Concept of production, factors of production, land, labour, capital, entrepreneur and organization, their characteristics, laws of diminishing returns, division of labours, efficiency of labour. Lecture: 4
8. Distribution of national income: Rent, wages, interest and profits-inequalities in income distribution causes and courses, roles of demand and supply in the determination of price and under perfect condition. Lecture: 5
9. Money and Banking: Function of money - inflation and deflation, and their effects on building industry, functions of central and commercial bank. Lecture: 5
10. Concept of economic planning, objectives of the five years plans with special reference of housing. Lecture: 3

Text Books:
1. Modern Micro Economic Theory by H.L.Ahuja, S.Chand.
2. Advance Economic Theory by M.L.Jhingan, Konark Publication

Reference Book:
1. **ENGINEERING ECONOMY**: Lecture: 7
 (a) Simple and compound interest, Annuities.
 (b) Basic methods for making economy studies - (i) Present worth method (ii) future worth method (iii) I.I.R. methods.
 (c) Comparison of alternative – (i) Present worth method (ii) future worth method.

2. **MANAGEMENT AND ORGANIZATION**: Lecture: 7
 (a) Principle of management, (b) element of management, planning, organization direction and control (c) Organizational structure – line, line and staff, functional, divisional, project & Matrix Organizational.

3. **PERSONNEL MANAGEMENT**: Lecture: 7
 (a) function, Recruitment, selection, Training promotion, discipline, (b) Job evolution, (c) Merit rating, (d) wedge and incentive.

4. **MARKING MANAGEMENT**: Lecture: 8
 (a) Marking research and sale forecasting (b) Sales management (c) advertisement and sales promotion.

5. **ACCOUNTING**: Lecture: 9
 Meaning, scope and role of accounting concept and convention, accounting as an information system, Recording of transaction in journal and ledgers, trial-balance preparation of final account.

6. **ENTREPRENEURSHIP DEVELOPMENT**: Lecture: 4
 Introduction to entrepreneurship, rural entrepreneurship, women entrepreneurship, factor affecting entrepreneurship growth.

Text Books:
1. Engineering economics by Degarmo, Sullivan & Canada, McMillan
4. Personnel management by C.B. Memoria & G.V. Gankar - Himalaya
5. Development entrepreneurship by Udai parekh & T Venkateshwara.

Reference Book:
1. Marketing management by P. Kotler.

24 1x05 COMMUNICATIVE ENGLISH

L-T-P : 3-1-0

1. **Basic Grammar**: Structural pattern, single word substitution: Editing tenses of Verbs. Lecture: 6
2. Common errors, comparison, Syntax. Lecture: 6
3. Antonyms, Homonyms, Comprehension based on topics of Science & Technology Lecture: 4
4. Precis, Paragraph Writing, Technical description Lecture: 4
5. Expansion (worked & phrase) Lecture: 3
6. Official Correspondence, Memorandum, Circular letter. Lecture: 3
7. Applying for a job, Resume Lecture: 4
8. Business Correspondence, Report Writing, E-mail. Lecture: 4
9. Phonetics (Symbol and Transcription), Pronunciation Lecture: 4
10. Reading –developing Reading skill. Lecture: 4
11. Group Discussion.

Text Book:
2. English grammar by Dr. D. Thakur
4. Technical English by Sharon j Garson and Steve M Garson

Reference Books:
1. Communication in English for Technical Student by Orient Longman
4. A Student’s Grammar of the English Language by Sidney Greendaum & Randolph Quirk (Pearson Education)
1. Various definitions of Economics: Nature of Economic Problem, Relation between science, Engineering, Technology & Economics

2. Meaning of demand. Law of Demand, Elasticity of demand, Practical importance & application of the concept of elasticity of Demand

5. Meaning of Market: Type of market – Perfect completion, Monopoly, Oligopoly, Monopolistic competition, Main feature of these market), Meaning of Supply and Law of Supply, Role of Demand & Supply in price in prime determination imperfect competition

6. Engineering Economy:

Text Book:
1. Modern Micro Economics by Theory - H.L.Ahuja-S.Chand
2. Advance Economic Theory by M .L.Jhingan- Konark Publication
3. Engineering Economics by Degarmo, Sullican & Canada – McMillan
4. Double Entry Book Keeping by T.S.Grewal – S.Chand

Reference Books:
2. Industrial Organisation and Engg. Economics by Banga & Sharma

24 1×07 SUSTAINABLE DEVELOPMENT

L-T-P : 3-1-0
Credit : 4

Detail Syllabus will be provided later on.
DEPARTMENT OF CIVIL ENGINEERING

01 1×01 ENGINEERING MECHANICS
L-T-P : 3-0-3 Credit : 5
Theory :
1. Statics : Force System : Moment of a force about a point and an axis; Equivalent force and moment, Wrench
 Lecture : 7
2. Equilibrium : Free body diagram; equations of equilibrium; problems in two and three dimension; plane frames and trusses.
 Lecture : 6
3. Friction : Laws of Coulomb friction, impending motion problems involving large and small contact surfaces; square threaded screw; principle of virtual work and stability.
 Lecture : 8
4. Dynamics : Kinematics and kinetics of particles dynamics in rectangular coordinates cylindrical coordinates and in terms of path variables.
 Lecture : 6
5. Properties of areas : Center of mass; Moments of inertia; kinematics of rigid bodies; Chasle’s Theorem, concept of fixed vector; velocity and acceleration of particles in different frames of references. General plane motion; Euler’s equation of motion.
 Lecture : 8
 (vector approach to mechanics will be followed for all the topics)

Text Book :

Reference Books :

Practical :
1. Practical based on mechanical advantage of different machines.
2. Moment of inertia.
3. Problem solving based on theory classes.

01 1×02 ENVIRONMENTAL SCIENCE
L-T-P : 3-0-3 Credit : 5
Theory :
 Lecture : 11
2. Toxicological Chemistry and effects and risks of it on human health
 Lecture : 6
3. Environmental Chemical Analysis
 Lecture : 6
4. Humans and Sustainability, Ecology and Sustaining Biodiversity
 Lecture : 7
 Lecture : 6
 Lecture : 6

Text Books :
1. Introduction to Environmental Engineering and Science, G.M. Masters. Pearson Education
3. Environmental Science, Wright, Pearson Education.
5. Environmental Chemistry, Sawyer and McCarty, McGraw Hill

Practical :
1. Case Analysis based on theory.
2. Determination of simple environmental parameters in laboratory.
3. Paper Presentation on current environmental issues.

01 1303 BUILDING SCIENCE
L-T-P : 3-0-3 Credit : 5
Theory :
 Lecture : 7
2. **Foundation**: shallow foundation (simple calculation)
 Lecture: 5

 Lecture: 5

4. **Concrete**: Concrete making materials, properties and types of cement, properties of concrete in fresh and hardened state, durability, spatial coherence
 Lecture: 10

5. **Building stones**: Varieties of Indian stones. Quarrying blasting Dressing of stones, characteristics of good building stones, Slate, Marble artificial stones. Stone preservation. Brick and brick masonry; Manufacture properties. Classification and specification, Brick masonry and principles of design of masonry structure.
 Lecture: 9

6. **Timber steel**: Properties and types miscellaneous materials; polymers and plastics .composites and smart materials.
 Lecture: 6

Text books:
1. Concrete Technology by Neville, A. M. & Brooks, J. J. Pearson Education
2. Civil Engineering Materials by Jackson, N. & Dhir, R. K, ELBS.
4. Civil Engineering Materials, TTTI Chandigarh
5. Construction Technology by Tony Bryan , Wiley
6. Advance Concrete Technology by Zogjin Li , Wiley

Reference Books:
3. “Materials for civil and construction Engineers” by Michael S. Mamouk and JOHN P. Zaniewski, Addison Longman Inc. USA

Practical:
1. Laboratory testing of materials
2. Load Calculations based upon IS Code.
3. Calculation on Brick structure design.

01 1+04 FIELD MEASUREMENT

L-T-P: 3-0-3
Credit: 5

Theory:
1. **Introduction**: Types of surveying, scale, principle of surveying, shrinkage of Maps.
 Lecture: 4

 Lecture: 7

 Lecture: 9

 Lecture: 9

5. **Theodolite**: Scope, Types, Adjustment of transit theodolite. Measurement of horizontal angles ,Errors and elimination, Methods of traversing, computation of bearings. Coordinate system Gale’s traverse table, Missing data, plotting
 Lecture: 9

 Lecture: 8

Text Books:
4. Surveying and Engineering by Paul Wastson , Wiley.

Practical:
Chain Survey, Compass Surveying, Plane Table Survey, Traversing, Leveling and Layout of a building.
01 1305 ENGINEERING GEOLOGY
L–T–P : 3–0–2 Credit : 4

Theory:
1. **Basic Geology**: General Geology, Mineralogy, Petrology (igneous, sedimentary and metamorphic), Structural geology, Crystallography.
 Lecture : 06
2. **Engineering properties of rocks**: Geomorphology (Geomorphic processes weathering, Erosion, Origin and formation of solids).
 Lecture : 06
3. **Geological hazards**: (landslides, earthquakes and volcanoes), Groundwater, Recent concepts in Geology, Plate tectonics and Sea – floor spreading.
 Lecture : 07
4. **Applied Geology**: Geophysical mapping : seismic, resistivity, gravity, radar, geotomography, logging; Geological exploration of an engineering site.
 Lecture : 08
5. **S. I. Desk Study**: Site investigation Boreholes: Remote sensing, GIS and GPS: Basic principle and their applications in studying and monitoring Lithosphere, Hydrosphere, Cryosphere and Atmosphere.
 Lecture : 08
6. **Cut Slopes in rocks and clays**: Geological factors affecting the construction of dams, reservoirs and tunnels.
 Criteria and factors for site selection for Dam, tunnels, waste/radioactive disposal sites, Indian Geology, Outline of stratigraphy of India.
 Lecture : 10

Text Books:
6. Element of Mineralogy in Engineering Geology by Read, H. H. Rutley's, CBS Publisher.

01 1X06 MECHANICS OF SOLID - I
L–T–P : 3-1-2 Credit : 5

Theory:
1. **Rigid and deformable solids**: Stress and strain : Tension, compression and shear.
 Lecture : 4
2. **Analysis of stresses**, Basic Equilibrium equations, analysis of Strain Deformation, Strain Displacement Relations, Normal and shear Strains.
 Lecture : 7
3. **Transformation**, principal stresses and strains, Maximum Stresses & Strains, Mohr’s Circle, volumetric Strain, compatibility conditions, Strain rosettes, Velocity Field and Strain Rates.
 Lecture : 6
4. **Method of sections** for evaluating internal forces in bodies, review of free body diagrams; axial force, shear and bending moment diagram.
 Lecture : 6
5. **Axially loaded members force** and deflections; Thermal Stresses.
 Lecture : 4
6. **Bending & shear**: classical theory, various cross-sectional shapes and composite sections of beams, shear stresses in beams.
 Lecture : 4
7. **Deflection of beams**: Bending deflection of simple beams by direct integration, singularity function method, Moment – Area Methods, deflection due to shear.
 Lecture : 4
8. **Torsion**: torsion of circular shift, close coiled helical springs, Torsion of thin walled open and closed sections and non-circular sections.
 Lecture : 6
 Lecture : 4
10. **Introduction** to energy methods.
 Lecture : 3

Text Books:
Reference Book:

Practical:
1. Tensile Test for M.S.
2. Hardness
3. Impact Test
4. Test for Anisotropic Substance – Wood, etc.

01 1307 FLUID MECHANICS
L-T-P : 3-1-2 Credit : 05

Theory:
Introduction, fluid properties: density, viscosity, compressibility, ideal and real fluids. Lecture : 04
1. Hydrostatics; fluid force on plane and curved surfaces, manometry, buoyancy, uniformly accelerated motion. Lecture : 06
3. Dynamics of fluid flow, Control volume concepts, Euler and Bernoulli’s theorems and various application like pivot tube, venturimeter, orifice meter, notches and weir etc; Impulse momentum theory and application. Lecture : 10
5. Forces on immersed bodies, concepts of separation, drag force, circulation and lift force. Dimensional Analysis, Model Similitude : Theory and application. Lecture : 08

Reference Book/Text Books:
2. Fluid Mechanics by Fox & McDonald, John Wiley.
6. I.H. Shames by Fluid Mechanics, PHI.

Practical:
Viscosity, Metacentric height. Orifice meter, Notches, Reynolds number, Impact of jet.

01 1X08 ADVANCED SURVEYING
L-T-P : 3-0-3 Credit : 5

Theory:
1. Curve: (a) simple curve - Scope, degree of curve, characteristics, offset from tangent, offset from chord produced. Rankine’s method, obstacles. (b) Compound and reverse curve – introduction of cases. (c) Transition curve – compound curve, super elevation, length of transition curve, characteristics equations, shift, tangent length and curve length of combined curve. Computation for setting out of combined curve (d) Vertical curve – scope, assumption of vertical curve, equations, computations for setting out curve, summit and valley curve. Lecture : 10
2. Electronic Distance meter: Scope, electromagnetic curve, basic definitions, phase of wave, types of waves, distance by transit time and phase difference, carrier wave, method of modulation. Electro-optical EDM measurement, infra-red EDM instrument, microwave EDM instruments, effect of atmospheric conditions and corrections, slope and height corrections, use of total station. Lecture : 09
3. Triangulation: Scope, classification, inter-visibility, satellite station, eccentricity of signals, base line and extension of base line. Theory of error terms, laws of weight, determination of M.P.V., M.P.E, adjustment of geodetic triangle with central station, adjustment of level line, adjustment of spherical triangle. Lecture : 10
4. Astronomical Survey: Terms, spherical triangle, spherical trigonometry. Time, sidereal time, apparent time, mean solar time, equation of time, universal time, standard time, conversion of time, determination of time, determination of azimuth, Latitude, Longitude. Lecture : 04
5. Geodetic Leveling: Scope, curvature and refraction correction, axis-signal correction, single angle observation, reciprocal leveling. Lecture : 08

Text Books:

Practical:
- Triangulation, Setting out complex curve, Contour plotting etc.

01 1x09 SOIL MECHANICS – I

L-T-P: 3-0-3

Credit : 5

Theory:
1. **Introduction,** Origin and Classification of soils, soil weight volume relationships, Index properties of soil, soil structures and Clay Minerals.
 Lecture : 8
2. **Effective stress principle,** Surface tension and capillarity, Permeability of soils, Darcy's law, test for determination of permeability, engineering use of permeability. Factors affecting permeability.
 Lecture : 4
3. **Seepage analysis,** flow nets, flow through dams.
 Lecture : 4
 Lecture : 4
5. **Compressibility and Consolidation**:- Consolidation Process- Spring analogy, Definition, measurement of consolidations- Determination of void ratio at various load increments, Terzaghi’s theory of one dimensional consolidation, Determination of Coefficient of consolidation, Analysis of consolidation data.
 Lecture : 10
6. **Vertical stress** below applied load in soils (Boussinesq, Westergaard, and graphical solutions), one and two-dimensional cases.
 Lecture : 5
7. **Compaction characteristics,** water content – dry unit weight relationships, OMC, max, Dry unit weight field compaction control.
 Lecture : 5
8. **Soil stabilization**
 Lecture : 2

Text Books :
2. Geotechnical Engineering by S. K. Gulati et. al., TMH Publication Co. Ltd., New Delhi

Reference Books :

Practical :
01 1x10 Hydraulics & Open Channel Flow

L-T-P : 3-0-0
Credit : 3

Theory :
1. **Concepts of boundary layer flow**: Introduction, boundary layer growth over a flat plate, Boundary layer thickness, laminar boundary layer, turbulent boundary layer, transition from laminar to turbulent flow.

 Lecture : 8

2. **Basic concepts of Open Channel flow**: Effect of gravity and viscosity on the flow behaviour, prismatic and non-prismatic channels.

 Lecture : 5

3. **Uniform flow**: Theoretical uniform flow equations; hydraulically efficient sections, velocity distribution in open channels, equation for velocity distribution, velocity distribution coefficients.

 Lecture : 6

4. **Non-uniform flow**: Specific energy, Critical flow in a rectangular channel, Discharge curve, Dimensionless specific energy and discharge curve, applications of specific energy, momentum principle applied to open channel flow, specific force, small waves and surges applied to an open channel.

 Lecture : 8

5. **RVF. Hydraulic jump**: Formation, length and loss of energy in a hydraulic jump, Location, elements, characteristics and types of a hydraulic jump.

 Lecture : 6

6. **Introduction to Unsteady flow**.

 Lecture : 2

Text Books :

Reference Books :

01 1X11 STRUCTURAL ANALYSIS - I

L-T-P : 3-1-0
Credit : 4

Theory :
1. **Basic introductory concepts**: structural systems, elements, joints, stability, equilibrium, compatibility, indeterminacy, types of loading.

 Lecture : 3

2. **Force-displacement relation**, free-body diagrams; analysis of forces in statically determinate structures: trusses (including compound and complex trusses), beams and frames (including internal hinges), cables and three-hinged

 Lecture : 10

3. **Stability of Walled Structures**

 Lecture : 3

4. **Influence lines** for beams and trusses under moving loads; Criteria for maxima.

 Lecture : 7

5. **Work and energy principles**: principle of virtual work, potential energy and Clasingliano's theorems, complementary energy theorems, reciprocal theorems and Mueller Breslau's principle with applications.

 Lecture : 7

6. **Analysis of displacements** in statically determinate structures: Unit (dummy) load and energy methods, moment area and conjugate beam methods, Williot-Mohr diagram.

 Lecture : 5

 Lecture : 7

Text Books :
7. Structural Analysis Vol 1 by Bhavikatti Vikash ,Publishing House Pvt. Ltd
ENGINEERING HYDROLOGY

L-T-P : 3-0-2 Credit : 4

Theory :

1. **Introduction** : Hydrologic cycle and processes, Precipitation, Infiltration and Evapotranspiration, Forms of precipitation, measurement, analysis, depth-area-duration and intensity-duration frequency relations. Lecture : 7

2. **Evaporation** : Process, measurement and estimation, Infiltration process, measurement and estimation, Evapotranspiration measurement and estimation, Stream flow measurements. Lecture : 6

3. **Runoff and Hydrographs** : Factors affecting flow hydrograph, Rainfall Runoff correlations, Flow duration curve, Mass curve, Unit hydrograph, its analysis and S-curve hydrograph. synthetic and instantaneous unit hydrographs. Lecture : 7

4. **Statistical analysis** : flood frequency studies, Rational method, time Area curves, Design flood, Design Storm, Risk, reliability and safety factor. Lecture : 8

5. **Channel and flood routing** : time series analysis of droughts and floods. Lecture : 4

Reference/Text Books :

3. Elementary Hydrology by V.P.Singh Prentice Hall.

Practical :

Rainfall measurement, evaporation loss measurement, gauge discharge measurement, Infiltration, Hydraulic jump & hump.

MECHANICS OF SOLID - II

L-T-P : 3-0-0 Credit : 3

Theory :

1. **Introduction** to elasticity theory; Simple 2D/3D problems and their solutions. Lecture : 6

2. **Pure bending** of beams with unsymmetrical section; Shear Centre; Torsion of noncircular members. Lecture : 6

3. **Curved Beams** : Beams on elastic foundation. Lecture : 6

4. **Plastic Theory** : plastic hinges and shape factor, uniqueness, upper bound and lower bound theorems; Failure theories. Lecture : 6

5. **Energy methods** : Introduction to viscoelasticity and viscoplasticity; Numerical methods Lecture : 6

6. **Stability of Equilibrium** : columns, Euler’s formula, Eccentric loading, end conditions and effective length, Practical Design formulae. Lecture : 6

7. **Coupled axial force** and bending moment problems; coupled torsion and bending moment problems. Lecture : 6

Text Books :

CIVIL ENGINEERING DRAWING

L-T-P : 0-0-3 Credit : 2

Practical :

- Understanding of conventional signs and symbols.
- Drawing of various details of residential buildings components : bonds and brickwork, doors, staircases, simple foundations.
- Site and building planning : Site plants, simple one-bedroom house, two-storied house, multi-storied apartment building, framed buildings in steel and concrete.
- Industrial and laboratory buildings.
• Drawing of framework details, floor and roofing systems, masonry, load bearing and non-load bearing walls.
• Working drawings of buildings.
• Planning and layout of large-scale commercial facilities.
• Introduction to AutoCAD.

Text Books :
(1) Building Drawing by B.P. Verma, Khanna Pub., Delhi
(2) Engineering Drawing by N.D. Bhatt.

01 1X15 SOIL MECHANICS & ROCK MECHANICS
L-T-P : 3-0-3 Credit : 5

Theory :
1. Shear Strength of Soil : Engineering use of shear strength, Direct and triaxial shear tests, Mohr-Coulomb strength criterion, drained, consolidated undrained and undrained tests, strength of loose and dense sands, NC and OC soils, dilution, pore pressure and Skempton’s pore pressure coefficients. Lecture : 7

2. Earth pressure theories & Retaining Walls : Limit equilibrium method, effect of wall movement on earth pressure, pressure at rest, Rankine state of plastic equilibrium, Coulomb’s theory, Rebhann and Culmann’s graphical methods. Sheet piles – Types and uses of sheet piles, Analysis of Cantilever and anchored sheet piles in cohesionless and cohesive soil, Rowe’s theory of moment reduction. Lecture : 5

3. Stability of slopes : Limit equilibrium methods, methods of slices, simplified Bishop’s method and friction circle method, factors of safety, stability under conditions of submergence, drawdown and steady seepage, location of critical arc, stability number, chart. Lecture : 9

4. Engineering properties of rocks : engineering classification of rocks, Surface and sub-surface investigation in rock including geophysical studies. Lecture : 7

5. Weathering of rocks : discontinuities, field and laboratory testing of rocks and rock masses, Stress-strain characteristics, Deformability of rocks, Friction and Shear strength, Slope stability, effect of water. Lecture : 8

6. Introduction to analysis and design of tunnels, blasting, bolting, tunneling techniques, application. Lecture : 6

Text Books :

Reference Books :

Practical : Direct Shear Test, Vane Shear Test, Unconfined Shear Test, Triaxial Shear Test, Brazilian test for tensile strength of rocks, Bending Test for tensile strength of rocks, Uniaxial Compressive Strength Test.

01 1X16 Structural Analysis – II
L-T-P : 3-0-0 Credit : 3

Theory :
(1) Analysis of statically indeterminate structures : fixed beams and propped cantilevers by conjugate beam method; Theorem of three moments. Influence lines for propped cantilevers, continuous beams and two – hinged arches. Lecture : 12

(2) Introduction to force and displacement methods : consistent deformation. Lecture : 6

(3) Energy method, slope-deflection and moment distribution; Analysis of 2 hinged arches. Lecture : 6

(4) Matrix formulation of force and displacement methods : Solution of simultaneous equations: Stiffness matrix approach with reference to computer application; generation of frame element stiffness matrix, Torsion effect; Concept of local effects, generation of load vector, Effects of finite joints; application to plane frames, space frames, grid structures. Lecture : 12

(5) Finite element Method for 2-D, Plane problems- introduction. Lecture : 6
Introduction to Structural analysis Software. Lecture : 2

Text Books :

01 1X17 DESIGN OF CONCRETE STRUCTURE - I
L-T-P: 3-0-3 Credit : 5
Theory:

1. Introduction to the design of concrete structure : Working stress and Limit, State Analysis Lecture : 6
2. Design of beams for flexure (Working Stress & Limit State Method) Lecture : 10
3. Bond, Shear and Torsion : Lecture : 8
4. One and two- way slabs, Flat slabs. Ribbed slabs: Lecture : 8
5. Axially and eccentrically loaded columns : Isolated and combined footings. Lecture : 10
(IS : 456 to be followed with limit state Design method or any other method as recommend in IS code)

Text Books:

2. Design of Reinforced concerts structure by P.Dayaratnam, Oxford IBM publication, New Delhi

01 1X18 ENVIRONMENTAL ENGINEERING-I
L-T-P: 3-0-3 Credit : 5
Theory:

1. Water quantity demand, Design period; population forecast, variation of quantity of water, sources of water: ground and surface, Intakes. Lecture : 7
2. Water quality physical chemical and biological parameters: Examination of physical, chemical and biological characteristics of water. Lecture: 5
4. Filtration: Slow and rapid sand filters: disinfection. Softening, adsorption and reverse osmosis and other treatment method. Lecture : 8
6. Introduction to air noise pollution Lecture : 6

Text Books:

Reference Books:

4. CPHEEO Manual on water supply and treatment, Ministry of Urban Development.
5. Environmental Management by GN Pandey, Publishing House Pvt. Ltd

Practical:
Environmental Chemical Analysis of Water for different Parameter; Visit to a Water W. W. Treatment Plant.
TRANSPORTATION ENGINEERING - I
L-T-P: 3-0-3 Credit : 5

Theory:
1. **Introduction**: Importance of transportation, Different modes of transportation. Characteristic of road transport, importance of roads in India, Scope of Highway Engineering, Classification of roads and road patterns, recently launched highway projects in India. Lecture : 3

4. **Highway Materials**: Sub-grade soil, Stone aggregate, Binding material (Bitumen emulsion tar and cut back), modification binders, use of Geo-textiles and Geo-grids, MORT specs, SUPERPAVE Lecture: 6

5. **Design of highway Pavements**: Function and desirable characteristics of pavements, pavements course, Pavements types, comparison of rigid and flexible pavement, pavement components, IRC and AASHTO methods. Lecture : 8

6. **Highway construction**: WBM, WMM, BM, BMM, PC, AC, Mastic Asphalt , BSG, PM, Seal Coat , BSD, Prime coat, Track coat, Highway maintenance and pavement Evaluation highway drainage. Lecture : 10

Text Books:
2. Principle and design of pavements by Kadiyali, L. R., Khanna Publishers, New Delhi

Reference Books:
1. Highway Engineering by Wright, P.H., John Wiley and sons, New York
2. An Introduction to Transportation Engineering and planning by Morlok, E.R., McGraw Hill, Kagakusha international student Education.
4. Fundamental of Transportation Engineering by Papacostas, C. S., Prentice hall of India, New Delhi

Practical:
1. **Test on Road Aggregates**
 a. Aggregate Crushing value test
 b. Abrasion test
 c. Aggregate Impact test
 d. Specific gravity and water absorption test
 e. Shape test (Elongation and Flakiness)
 f. Stripping value of road aggregate

2. **Tests on Bitumen**
 a. Penetration test
 b. Softening point test
 c. Specific gravity test
 d. Viscosity test

DESIGN OF STEEL STRUCTURES
L-T-P:2-0-2 Credit : 4

2. **Design of structural Fasteners**: rivets, bolts and welds. Lecture : 6

3. **Design of tension members**. Lecture : 4

5. **Design of flexure members**: Beams- rolled sections, built up section, plate Girders- riveted/ bolted and welded, Design of eccentric connections: riveted/ bolted and welded. Lecture : 8

6. **Design of beam**: Columns and columns based welded and riveted column bases- moment resistant connection - semi rigid connection- design of supports. Lecture : 5

7. **Design of steel industrial sheds**. Wind Design. Lecture : 8

8. **Introduction** inelastic action and plastic hinges application of PD and LRFD. Lecture : 3

Text Books:

Practical/Sessional :
Based upon theory Classes

01 1x21 CIVIL ENGINEERING PROFESSION & PRACTICE
L-T-P : 0-0-3 Credit : 2
Introduction lectures, demonstrations, field visits on activities of department and the civil engineering profession & Ethics.

01 1x22 FOUNDATION ENGINEERING
L-T-P : 3-0-0 Credit : 3
THEORY:
1. Explorations, Geographical Investigation, Characterization of ground, site investigations, method of drilling, sampling. Lecture: 4
2. Bearing Capacity, general, local and punching shear failures, correction for size, shape, depth, water table, eccentricity, ultimate and allowable Bearing capacities, Effect of ground water level. Lecture: 05
3. In-situ tests : SPT, CPT, plates load tests, methods for ultimate bearing capacity based on in situ tests. Lecture: 03
4. Settlement of foundations: Lecture: 03
5. Pile foundation : Introduction, Pile classification, Pile installation, cast in sine pile, Driven pile, load carrying capacity of pile by state and dynamic methods, Pile load test, Pile groups, laterally loaded piles. Lecture: 08
7. Expansive Soils : Identification, swelling pressure, Foundation on expansive soil, Stabilization of expansive soils. Lecture: 05

Text Books:

Reference Books:

01 1X23 ENVIRONMENTAL ENGINEERING - II
L-T-P : 3-0-3 Credit : 3
Theory:
1. Generation and collection of waste-water, sanitary, storm and combined sewerage systems, Quantities of sanitary wastes and storm water, Design of sewerage system. Lecture : 7
2. Physical, Chemical and Biological characteristics of waste-water, Primary, Secondary and Tertiary treatment of waste-water. Wastewater; Wastewater Disposal Standards Lecture : 4
4. Anaerobic process : conventional anaerobic digester, High rate and Hybrid anaerobic reactors, Sludge digestion and handling, Septic tanks, Disposal of effluent and sludge. Lecture: 9
5. Simple design problems on sewerage, waste-water treatment unit and sludge digestion. Lecture : 4
6. Introduction to Municipal solid Waste Management's Lecture : 4

Text Books :
1. Waste water Engineering Treatment and Reuse by Metcalf & Eddy, TMH Publication.
2. Reference Books :

01 1X24 TRANSPORTATION ENGINEERING - II
L-T-P: 3-0-0
Credit : 3
Theory:
1. Railway Engineering :Role of railway in transportation system, railway and highways, comparisons. Lecture: 4
2. Permanent ways : Alignment and grade, cross section and its elements, gauges, grade compensation and widening of gauges on curves, coning of wheels and traction resistance. Lecture : 10
3. Single and Interlocking, Points and crossing, station and yards. Lecture : 10
4. Introduction to Bridge Engineering:
4.1 Introduction, type of bridge and culvert and their suitability, site selection.
4.2 Determination of scour depth, depth of foundation, linear waterway Economic span, Afflux, Freeboard, clearance.
4.3 Load forces and stresses in bridge structures, IRC loading.
4.4 Type of bridge : Super structures flooring and their choice, Details of bearings and joints in Bridge super structure.
4.5 Type of bridge foundation – spread, raft, well and caissons, sinking of well foundations (design excluded, Method of erection of bridges. Lecture 10
5. Introduction to Airports. Lecture 08

Text Reference Books:

01 1x 25 DESIGNS OF HYDRAULIC STRUCTURES
L-T-P : 3-0-3
Credit : 5
Theory:
1. DESIGN & MAINTENANCE OF CANALS: Design of canal based on tractive force approach, Maintenance of unlined channels (Based on IS 4839 – 1979 part – I), Maintenance of lined channels (Based on IS 4339 – 1979 part – II). Lecture 5
2. DESIGN OF CANAL OUTLETS. Lecture : 3
3. CANAL HEADWORKS
- Selection of site for storage & diversion head works
- Weir or Barrages
- Divide wall, Scouring sluice or under sluices, fish ladder. Lecture : 5
4. DAMS
- Gravity dams, earth & rock fill dams, buttress dams & arch dams.
- Spillways & outlet works Lecture : 10
5. CANAL REGULATION WORKS
- Head Regulator, Distributary head regulator, Cross regulators
- Necessity of channel falls, types of falls & design of vertical drop fall/Sharda type falls Lecture : 10
6. CROSS – DRAINAGE WORKS
- Types of C – D works: Aqueducts, siphon Aqueducts, Super passages, Siphon Super passages, level crossings, Inlet & Outlet.
- Fluming of channels & design of channel transitions.

7. An introduction to river basis development.

Text Books:
1. Fundamental of Irrigation Engineering by Bharat Singh, Nemchand Bros., Roorkee, Uttarakhand.

Reference Books:

PRACTICAL/SESSIONAL:
Design problem based on theory classes.

01 1X26 DESIGN OF CONCRETE STRUCTURES – II
L-T-P : 3-0-3
Theory:
1. Design of RCC water tanks, solos, bunkers and simple bridges. Lecture : 14
2. Design of residential buildings. Lecture : 14
3. Design of arches and shells. Lecture : 14

Text/Reference Books:

Practical/Sessional:
Complete design and drawing of two complete projects such as a residential building, a bridge, a stadium, elevated water tank, bunker, silo and shell roof.

01 1X27 CONSTRUCTION PLANNING AND MANAGEMENT L-T-P : 3-0-0
Theory:
1. Construction and fabrication methods: Pre-fabrication techniques; choice of equipment safety features and Regulations. Lecture : 8
2. Value Analysis, Feasibility studies; Economics of project evaluation: Finance, material and manpower development. Lecture : 8
3. Network analysis, PERT: Leveling of Resources. Lecture : 8
4. Site organization: layout; work study; Decision making processes: CPM and L. P. Project monitoring. Lecture : 10
5. Maintenance management: Case studies. Lecture : 6
6. Introduction to Project Management Software. Lecture : 5

Text Book:
1. Construction Planning and Management by U. K. Srivastav.

01 1X28 CONTRACTS, SPECIFICATION AND ESTIMATION
L-T-P : 0-0-3
Practical/Sessional:

Specifications: Introduction, Object of specification, Types, General specification of buildings.

Specification of Materials: Bricks, Cement, Sand, Water, Lime and Reinforcement, Quantity surveying and estimating, Analysis of rates. The evaluation will be based upon submission of a partial or complete estimate of a project.

Text Books:

01 1X30 FINITE ELEMENT METHODS
L-T-P : 3-0-0 Credit : 3

Theory:
Principles of discretization. Element stiffness mass formulation based on direct, variational and weighted residual techniques and displacements, hybrid stress and mixed approaches, shape functions and numerical integrations. Convergence, displacement formulations for rectangular, triangular and isoparametric elements for two dimensional and axis symmetric stress analysis; thin and thick plates and shells: Seminalytical formulations. Three dimensional elements and degenerated forms. Stiffener elements and modifications such as use of different coordinate systems, use of nonconforming modes and penalty functions.

Text Books:

01 1X31 COMPUTER AIDED DESIGN
L-T-P: 3-0-0 Credit : 3

Theory:
Engineering design principles, interactive design using workstations, and software tools. Computer graphics. Introduction to GKS. Starnase :onraroes. Computer aided design and drafting, data base management system, simulation and optimization. Applications in Civil Engineering, structural design.

01 1X32 WATER AND LAND MANAGEMENT
L-T-P: 3-0-0 Credit : 3

Theory:
1. Problems of irrigation systems in India, Soil and Land Irrigability classification, Basic concepts of diagnostic analysis.
2. Soil, Water Plant Relationship, Evapotranspiration, crop coefficient, effective rainfall, crop water requirements, irrigation efficiencies.
3. Irrigation scheduling, Stressed irrigation, drought and water management policy during drought.
5. Water application methods: Border irrigation, basin irrigation, furrow irrigation, sprinkler and drip irrigation.
6. **Operation and maintenance of irrigation system**: rotational water distribution systems - arabandi. Evaluation of irrigation project's performance and improvement.
 Lectures: 5

7. **Design of an on farm drainage system**, surface drains, sub- surface drains, mole drains and bio-drains: outfall condition, salinity and alkalinity control, operation and maintenance of a drainage system.
 Lecture: 6

 Lecture: 6

 Lecture: 5

Text Books:
2. FAO Irrigation and Drainage Paper no. 24 & 58, Rome, Italy.

Reference Books :
1. Diagnostic Analysis of Minor irrigation scheme, Publication no. 11, WALMI, Aurangabad (Maharashtra).
2. Application of soil survey in Irrigation Water Management, Publication no. 21, WALMI, Aurangabad (Maharashtra).
3. Irrigation : Gravity Methods and Efficiencies, Publication no. 15. WALMI, Aurangabad (Maharashtra).

01 1X33 AIR POLLUTION ENGINEERING
L-T-P: 3-0-0
Credit: 3

Theory:
1. **Air pollutants**, Sources, Classification.
 Lecture: 3
2. **Combustion Processes** and pollutant emission.
 Lecture: 4
 Lecture: 4
4. **Reactions of pollutants** in the atmosphere and their effects- Smoke, smog and ozone layer disturbance etc.
 Lecture: 8
5. **Atmospheric diffusion** of pollutants and their analysis. Transport, transformation and deposition of air contaminants on a global scale.
 Lecture: 8
6. **Air Sampling** and pollution measurement methods, principles and instruments, Ambient air quality and emission standards.
 Lecture: 5
7. **Control principles**, Removal of gaseous pollutants by adsorption, absorption, reaction and other methods, Particulate emission control, settling chambers, cyclone separation. Wet collectors, fabric filters, electrostatic precipitators and other removal methods.
 Lecture: 10

Reference Books:
1. Air Pollution by Rao & Rao, TMH.
2. Air Pollution Control Engineering by Rao, TMH.

01 1X34 AIRPORT PLANNING AND DESIGN
L- T- P: 3-0-0
Credit: 3

Theory:
1. **Aircraft characteristics** related to airport design.
2. **Airport configuration**: runway configurations, relation of terminal area to runway orientation, Geometric Design of the airfield - ICAO and FAA design standards, runways, taxiways.
3. **Holding aprons and aprons**: Planning and design of the terminal area- apron – gate system, size and number of gates, aircraft parking configurations, the passenger terminal system.
4. **Airport lighting and marking**: air traffic control, airport planning and air travel demand forecasting; Structural design of airfield pavements.

01 1x35 RIVER HYDRAULICS AND SEDIMENT TRANSPORT
L-T-P: 3-0-0
Credit: 3
Theory:
1. **River morphology** types and stages of river, phenomenon of floods, flood damages, means of flood control, river training works, groynes and spurs, embankments, cut-offs and river control structures.
2. **Sediment transport principle**, mechanics of aggradation and degradation, of river beds and bank erosion, Bed load, suspended load and total load, River measurement, gauge discharge and sediment.

Text Books:
4. River Engg. by M.S. Peterson, PHI, New Delhi

01 1x36 CIVIL ENGINEERING DRAWING USING AUTOCAD
L-T-P: 3-0-0 Credit : 3

Theory: Introduction to AutoCAD :
Loading and configuring AutoCAD. Creating viewing and editing the drawing in Auto Cad, Different compound entries, From Table menu, From bottom menu, Data entries, Absolute coordinates, Relative and Polar coordinates, World coordinates, Pointing with key boards, object snap etc. Advanced user Interfaces. Menu bar and pull Down menus Icon menu dialogue Boxes, Utility, Commands, All the available commands in Auto Cad, Edit and Enquiry Commands, Display Controls, Dimensioning and crosshatching, Exercise 3 Nos. Plotting, Sessional Examinations.

01 1X37 STRUCTURAL DYNAMICS
L-T-P: 3-0-0 Credit : 3

Theory: Formulation and solution of SDOF and MDOF dynamics systems; Undamped and Damped systems; Free and Forced vibration; Duhamel's integration; Dynamic load factor; Modal Analysis; Continuous systems, Axial and transverse vibration of beams. Vibrations of plates; support motion; Energy Principles and Hamilton’s Equations; Introduction random vibration.

Text Book
1. Dynamics of Structures by Patrick Paultre, Wiely
2. Dynamics of Structures by Clough & Penzine , MC- Graw- Hill

01 1X38 SOLID WASTE MANAGEMENT
L-T-P: 3-0-0 Credit : 3

Theory: Solid wastes-Sources, nature and characteristics of municipal solid waste, Quantities and qualities, Rates of generation and factors affecting them, Potential of diseases, nuisances and other problems due to solid waste management, Solid wastes management-Generation, on-site storage, collection, separation, processing and disposal On-site storage methods-containers, their type, size and location, Collection systems-Vehicles, routing, route balancing and transfer stations , Processing methods, recovery and reuse of materials and energy, Disposal methods such as sanitary landfill biological digestion etc. Industrial and hazardous solid waste management, Urban solid waste management and its modeling.

01 1X39 TRAFFIC ENGINEERING
L-T-P: 3-0-0 Credit : 3

Theory: Introduction, Traffic survey speed, Journey and Delay Surveys, Vehicles Volume counts, O-D survey. Use of Photographic Technique in Traffic survey, Elements of Parking survey Analysis and Interpretation of Traffic Studied Statistical Methods of Traffic Engineering, Speed studies, Traffic forecasting Traffic Controls; Traffic signs, Road marking , Traffic signals Highway capacity analysis for rural roads and urban roads Traffic Regulations, Regulation of traffic, Design of controlled and uncontrolled intersections Traffic safety; Road accidents , Causes and Prevention, Street Lighting and Traffic management.

01 1X40 DESIGN OF WATER RETAINING, PLATE AND SHELL STRUCTURES
L-T-P: 3-0-0 Credit : 3
Theory:

- Pure bending of plates; Symmetric bending of circular plates; small deflection of laterally load plates;
- Rectangular plates with various edge conditions; Continuous rectangular plates; Plates of various shapes; Application for water tanks, Shell as space enclosure, geometry, classification, principal and Gauss curvature; General Theory of thin elastic shells; Shallow and high rise shells; Circular long and short cylindrical shells, beam-arch approximation for long shells; shells of double curvature, surfaces of revolution and translation; Circular, elliptical hyperbolic paraboloids, conoids and funicular shells-membrane and approximate bending theories; Closed form and numerical method of analysis of Synclastic and Anticlastic shells.

01 1X41 INDUSTRIAL WASTE TREATMENT

L-T-P: 3-0-0
Credit: 3

Theory:

Industrial waste waters nature and effects, Water pollution and problem pollutants, stream sanitation, deoxy-generation and self purification in streams, sources and characteristics of industrial waste-waters, sampling and analysis, in-plant waste control and water reuse, different methods of treatment, aeration, sedimentation, combined biological, physical and chemical process, application of treatment method to some selected industry, introduction to ISO:14,000, life cycle analysis etc.

01 1X42 TRANSPORTATION SYSTEM AND PLANNING

L-T-P: 3-0-0
Credit: 3

Theory:

Introduction to Transportation planning process, Transportation Surveys, Models for Trip Generation, Trip Distribution, Traffic Assignment and modal split, Network Analysis, Shortest path Algorithms, Minimum Tree, Land-use Transport Models, Calibration of Transportation Models, Economic Evaluation of Transportation plans, Facility Location Problems, vehicle Operating Costs.

Text Books :

01 1X43 WATER RESOURCES PLANNING AND MANAGEMENT

L-T-P: 3-0-0
Credit: 3

Theory:

Purpose and scope of water resources development, water resources of world and Asian continent, water resources potential and utilization in India, turns boundary features, functions of water in land development and social planning, integrated river basin development; water supply and demand assessment, types of consumptive and non-consumptive uses of water resources; single and multipurpose water users-compatibility of different uses; allocation of available water resources, Reservoir planning, Systems concept in engineering, system analysis, optimization techniques, linear programming, dynamic programming, water resources planning, and project formulation, economics of water resources development; conjunctive use; interstate and international issues, environmental impact.

Text Books :

4. Water Resources Engineering by Larry W. Mays, Wiely

01 1X44 SOIL DYNAMICS

L-T-P: 3-0-0
Credit: 3

Theory:

Principles of dynamics and vibration, Single degree and Multiple degree of freedom systems- free and forced vibrations, Dampening and Soil Spring Constants, Introduction to vibration of continuous systems – wave propagation in soil media, Laboratory and In-situ determination of dynamic soil properties, Introduction to machine foundations and its practical considerations for construction IS code of practice, Examples, Soil Liquefaction.
Text Book :

01 1X45 ADVANCED FOUNDATION ENGINEERING

L-T-P : 3-0-0 Credit : 3

Theory:

Critical study of nature and complexities of soil-structure interaction; Application of advanced techniques of analysis such as the finite element method, finite differences, relaxation and interaction for the evaluation of soil-structure interaction for different types of structures under various conditions of loading and subsoil characteristics; Preparation of comprehensive design oriented computer programmes for specific problems. Interaction problems based on the theory of subgrade reaction such as beams, footing, rafts, bulkheads etc., Legal Aspects of problems in Foundation Engineering.

Text Books:

01 1X46 WATER POWER ENGINEERING

L-T-P : 3-0-0 Credit : 3

Theory:
Comparison of hydro-power and thermal power, combined power systems and grids, assessment of available hydropower, necessity of storage and pondage, flow duration curve and their uses, types of hydropower plant, design of power house structures; intakes, conveyance systems, foreway, surgetanks, power house, tail race, types and selection of turbines, water hammer analysis.

Text Books:

01 1X47 BRIDGE ENGINEERING

L-T-P : 3-0-0 Credit : 3

Theory:
Brief historical review, Different types of Bridges and span range, Bridge codes, Bridge super structures- Reinforced concrete slab bridge deck, Plate girder bridges, Composite bridges, prestressed concrete bridges, Steel trussed bridges; Orthotropic plate theory, Determination of rigidity parameters, Load distribution in different girders – Courbon’s method, Morice-Little method, Box girder bridges – finite element and finite strip analysis, finite difference analysis of deck slab, grillage analysis, Cable stayed and suspension bridges; Bridge construction; Bridge maintenance.

Reference/Text Books:
1. Bridge Engineering by Vector et. al., TMH.

01 1X48 SYSTEMS ENGINEERING

L-T-P : 3-0-0 Credit : 3

Theory:
Introduction to the course and its importance, Optimization methods: Introduction, Problem formulation, Introduction to mathematical principles in optimization, Solution techniques for linear and integer problems Introduction to non-linear problems, simplex and dual simplex methods, Civil Engineering Case Studies, Transportation Model, Degeneracy and dual simplex methods, civil engineering case studies. Transportation model. Degeneracy and assignment problem, Project scheduling, queuing system and their characteristics, PERT & CPM, inventory and crew scheduling.
01 1X49 ENVIRONMENTAL IMPACT ASSESSMENT
L-T-P : 3-0-0
Credit : 3
Theory :

Text books :

01 1X50 PRE-STRESSED CONCRETE DESIGN
L-T-P : 3-0-0
Credit : 3
Theory :
Concept on mechanics; materials; properties of section; stress analysis- three methods: prestressing and post stressing; Beam design – no tension and ultimate; Poles and slab panels; Loss assessment; Composite beams; Design for shear. Large span structure; Structural forms and design principles; Special material, open web and built-up structures.

01 1X51 DESIGN OF DAMS
L-T-P : 3-0-0
Credit : 3
Theory:
Gravity on Mechanics, Buttress dams, Rock fill dams; Application of analogy techniques; Spillways techniques, classification, design considerations; Contraction joints, treatment of foundations, design of hydropower installation and intake structures.

01 1X52 IRRIGATION ENGINEERING
L-T-P : 3-0-0
Credit : 3
Lecture : 5
Lecture : 12
3. Irrigation Efficiencies.
Lecture : 3
4. Irrigation Scheduling : for both Irrigated dry and irrigated wet crops, irrigation scheduling in command areas.
Lecture : 4
5. Flow Irrigation : Classification of canals, Canals alignments, Components of permanent canal system, Canal capacity, canal losses, Lined channels & their design, Kennedy’s slit theory and design of channels on its basis, Lacey’s slit theory and regime equations, various types of relations, Design of channels based on Lacey’s equation.
Lecture : 12
6. LIFT IRRIGATION : Classification, Location, Water lifting arrangement, Yield of wells.
Lecture : 6
Text Books :
1. Fundamental of Irrigation Engineering by Bharat Singh, Nemchand Bros., Roorkee, Uttarakhand.

Reference Book :

01 1x53 LAND DRAINAGE
L-T-P : 3-0-0
Credit : 3
1. INTRODUCTION : Forms and nature of occurrence of watering soils – Soil moisture characteristic, Darcy’s law & Richards equation – Soil water movement above water level.
Lecture : 3
2. AGRICULTURE DRAINAGE : Needs for drainage – Drainage and crop production, drainage to control water logging & salinity.
Lecture : 2
3. **DRAINAGE SYSTEMS**: Components of a drainage system, Field drainage system (i) Surface drainage system, (ii) sub surface drainage systems and (iii) Compound drainage systems.
 Lecture : 3

4. **DRAINAGE INVESTIGATIONS**: Water table dissolves salts in ground water, hydraulic conductivity, depth of impermeable layer, hydraulic conductivity, drainage coefficient, flow at the junction of two drains.
 Lecture : 10

5. **SURFACE DRAINS**: hydraulic design of a surface drains and its related structures, construction and maintenance of surface drain’s.
 Lecture : 4

6. **SUBSURFACE DRAINS**: Types – design of depth of subsurface drains, design of spacing of subsurface drains (i) for steady state condition (ii) for unsteady state condition – diameter of pipe drains, grade of pipe drains, design of envelop, construction and maintenance, economics of subsurface drains.
 Lecture : 12

7. **SOIL SALINITY**: definitions, saline, alkaline and saline, alkali soils, drainage for salinity control, land reclamation techniques for salt affected soils.
 Lecture : 8

Text Books:

Reference Books:

01 1x54 FLOODS & DROUGHTS
L-T-P: 3-0-0

Credit : 3

1. **FLOODS**
 - Introduction
 - Rational Method
 - Empirical Formulae
 - Unit Hydrograph Method
 - Flood Frequency Studies
 - Gumbel’s Method
 - Log Pearson Type III Distribution
 - Partial Duration Series
 - Regional Flood Frequency Analysis
 - Limitations of Frequency Studies
 - Design Flood
 - Design Storm
 Lecture : 12

2. **FLOOD ROUTING**
 - Introduction
 - Basic equations
 - Hydrologic storage routing
 - Attenuation
 - Hydrologic channel routing
 - Hydraulic method of flood routing
 - Routing in conceptual hydrograph development
 - Clark’s method for IUH
 - Flood control
 - Flood forecasting
 - Flood control in India with special reference to Bihar
 Lecture : 15
3. FLOOD MANAGEMENT TECHNIQUES
Introduction Flood Control and Management-Catchment Area treatment- Structural Measures- Non-structural Measures.

Lecture : 5

4. DROUGHTS
- Climatic Regions
 - Arid region
 - Semi-arid region
 - Humid regions
- Drought
 - Drought and rainfall
 - Drought classification
 - Drought, rainfall and temperature
- Effects of drought
 - Effects on ground water
 - Effects on water quality
 - Effects on socio economic status
- Drought Control
 - Supply oriented drought control measures
 - Demand oriented drought control measures.

Text Books :
1. Engineering Hydrology by Muteraja.
2. Engineering Hydrology by Subramaniam

01 1X55 GROUND WATER ENGINEERING
L- T- P : 3-0-0 Credit : 3
1. Introduction : Ground water development in India. Characteristics of fluid and the Medium. Soil moisture, Classification of subsurface water, Darey’s law, Range of validity of Darey's law, Co-efficient of permeability.
4. Unconfined flow towards well with uniform infiltration from the ground surface. Confined radial flow towards the well. Discharge as a function of drawdown, well efficiency, Radius of influence, Determination of permeability by one or two well methods.
5. Lowering of ground water table, Unsteady confined flow, Well losses.
6. Geophysical Investigations Surface geophysical techniques, Electrical resistivity, Seismic refraction and reflection, other methods.

Text Books :

Reference Book :

01 1x56 ADVANCED SOIL MECHANICS

2. **Clay minerals**.

5. **Shear Strength** Use of Stress path in triaxial test- Undrained & drained tests for Normally Consolidated & Over Consolidated clay samples.

7. **Bulk Head & Cofferdams**: Classification – cantilever sheet pile wall in cohesionless and in cohesive soils. Arching in soils, Classes of underground conduits, loads on positive projecting and negative projecting conduits.

Text Book:

01 1x57 ADVANCED STRUCTURAL ANALYSIS

L-T-P : 3-0-0

1. **Matrix method in skeletal structural analysis**: force and displacement methods including analysis substructures Non-linear and Elasto-plastic analysis.

2. **Analysis of plates**, Folded plates and singly curved shells, conventional and approximate methods.

01 1x58 INTRODUCTION TO EARTHQUAKE RESISTANT DESIGN METHODS

L-T-P - 3-0-0

1. **INTRODUCTION** :-

2. **DYNAMICS OF ELASTIC SYSTEMS**:

Vibrations of single degree of Freedom System, Sources of vibrations, Types of vibrations, Degree of Freedom, Free and forced vibrations, vibrations of single Degree Freedom systems(Damped and undamped), Viscous Damping.

3. **DYNAMICS OF SOILS AND SEISMIC RESPONSE** :-

Dynamic behaviour of soil- stress condition of soil, settlement of dry sand, Liquefaction of saturated cohesionless soil, factors affecting liquefaction characteristics, Dynamic soil properties- Field tests and Laboratory tests, Prevention of liquefaction, Seismic Considerations for foundations- shallow and Deep foundation.

4. **VIBRATION OF CONTINUOUS SYSTEM** :-

Introduction to two Degree Freedom system, Multi Degree freedom system, Vibrations of continuous system, Axial and flexural free vibrations of Beime Forced vibrations-Earthquake excitations.

5. **EARTHQUAKE RESISTANT**:-

6. **EARTHQUAKE RESISTANT**:-

*Construction of Buildings *Recommendations of IS 4326, provisions of Horizontal band, provision of vertical re-enforcements, Special considerations for earthquake resistant foundation design for buildings.
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

05 1301 OBJECT ORIENTED PROGRAMMING

L-T-P : 3-0-3

1. Introduction to C++: Object Oriented Technology, Advantages of OOP, Input-output in C++, Tokens, Keywords, Identifiers, Data Types C++, Derives data types. The void data type, Type Modifiers, Typecasting, Constant, Operator, Precedence of Operators, Strings. Lecture: 3

2. Control Structures: Decision making statements like if-else, Nested if-else, goto, break, continue, switch case, Loop statement like for loop, nested for loop, while loop, do-while loop. Lecture: 3

3. Functions: Parts of Function, User-defined Functions, Value-returning Functions, void Functions, Value Parameters, Function overloading, Virtual Functions. Lecture: 3

4. Classes and Data Abstraction: Structure in C++, Class, Build-in Operations on Classes, Assignment Operator and Classes, Class Scope, Reference parameters and Class Objects (Variables), Member functions, Accessor and Mutator Functions, Constructors, default Constructor, Destructors. Lecture: 15

5. Overloading & Templates: Operator Overloading, Function Overloading, Function Templates, Class Templates. Lecture: 5

6. Inheritance: Single and Multiple Inheritance, virtual Base class, Abstract Class, Pointer and Inheritance, Overloading Member Function. Lecture: 5

8. Exception Handling: The keywords try, throw and catch. Creating own Exception Classes, Exception Handling Techniques (Terminate the Program, Fix the Error and Continue, Log the Error and Continue), Stack Unwinding. Lecture: 5

Text Books:
1. Thinking in C++, Volume 1 & 2 by Bruce Eckel, Chuck Allison, Pearson Education

Reference Books:
1. The C++ Programming language 3/e by Bjarne Stroustrup, Pearson Education.
2. C++, How to Programme, 4/e, by Deitel, Pearson Education.
3. Big C++ by Cay Horstmann, Wiley India.
4. C++ Primer, 3e by Stanley B. Lippmann, Josee Lajoie, Pearson Education.
5. C++ and Object Oriented Programming Paradigm, 2e by Debasis Jana, PHI.

Programming Lab (OOP)
Writing programs using classes and objects, constructors and destructors, Inheritance properties, Overloading operators, Use of pointers list representation, Programs and virtual functions, file handling, I. O. Manipulator using C++.

05 1X02 COMPUTER ARCHITECTURE

L-T-P : 3-0-0

1. Introduction: Computer Arithmetic, Instruction sets, Introduction to computer organization, CPU Design. Lecture: 8

2. Micro programmed Control: Control Memory, Address sequencing, Micro program example. Lecture: 5

4. **Introduction to Parallel Processing**: Evolution of computer systems (RISC vs. CISC), Parallelism in uniprocessor systems, Architectural classification schemes.
 Lecture: 5

5. **Principles of Pipelining and Vector Processing**: Pipelining, Overlapped parallelism, Principles of designing pipelines Processors, Vector processing requirements.
 Lecture: 5

 Lecture: 4

Text Books:
1. Computer System architecture, 3e by M. Morris Mano, Pearson Education.

05 1X03 **DATA STRUCTURES**

L–T–P : 3-0-0
Credit : 3

1. **Introduction to algorithm** - Analysis for time and space requirements.
 Lecture: 2

2. **Linear Data Structures and their Sequential Representation**: Array, stack, queue, circular queue and their operations and applications.
 Lecture: 7

3. **Linear Data Structures and their Linked Representation**: Linked linear list, circularly linked linear list Doubly linked list, linked stack, linked queue and their operations and applications.
 Lecture: 10

4. **Nonlinear Data Structures**: Binary trees, binary search trees, representations, operations, thread representations, sequential representation traversals, applications, B-tree, Operation on B-tree, AVL Search tree and operations, Huffman algorithm, height Balanced Tree.
 Lecture: 14

5. **Sorting and Searching**: Bubble Sort, Insertion Sort, selection Sort, Heap Sort, Quick Sort, Radix Sort, Linear and Binary search, Union-Find, Hashing methods, etc.
 Lecture: 10

Text Books:
3. Data Structure using C and C++ by Langsam, Pearson Education.
5. Data Management & File Structures. 2E, by Mary E. S. Loomis, PHI.

Reference Book:
2. C and Data Structures by P. S. Deshpande, Wiley India.

05 1X04 **OBJECT ORIENTED ANALYSIS AND DESIGN**

L–T–P : 3-0-0
Credit : 3

1. **Introduction**: Object Oriented Development & themes, Usefulness of OOPS, Object Modeling Technique.
 Lecture: 6

 Lecture: 15

 Lecture: 15

4. **Case Studies**: Object oriented Language Relational Database.
 Lecture: 8

Text Books:
1. Object Oriented Modeling and Design by Rumbaugh, Pearson Education.
2. Object Oriented Analysis and Design: Understanding System Development with UML by Mike O Doherty, Wiley India.

Reference Books:
1. Object Oriented Analysis and Design with Application by Gradv Booch, Pearson Education.

05 1X05 SYSTEMS PROGRAMMING
L-T-P : 3-0-3 Credit : 5
1. Introduction : System software and its components. Lecture : 2
3. Macros and Macro Processor : Macro definition and call Macro expansion, Nested Macro calls, Design of a Macro preprocessor. Lecture : 10
5. Compiler: Machine- Dependent Compiler, Machine- Independent Compiler, Compiler Design (Options, Interpreter, P-code Compiler), Compiler-, Case study of Compiler, Lecture : 10

Text Books :
2. System programming by John J. Donovan.
3. System programming and operating systems by D. M. Dhamdere.
4. IBM PC assembly language & Programming by Peter Abel, Niyaz Nizamuddin, Pearson Education.

Programming Lab (System Programming)
Symbol table (Tree Storage), construction, Implementation of single pass, two pass, Assembler, Macro Processor, module binder (with limited instruction set). Implementation of software tools like Text editor, Interpreter, program generator etc.

05 1X06 DESIGN AND ANALYSIS OF ALGORITHMS
L-T-P : 3-0-0 Credit : 3
1. Introduction : Algorithm, performance evaluation of algorithms, space & time complexity, notion of optimality. Lecture : 5
2. Divide and Conquer : Finding the maximum and minimum- Quick Sort – Selection- Strassen’s matrix multiplication etc. Lecture : 4
3. Greedy Algorithm : Knapsack Problem, (Knapsack, Fractional Knapsack), Activity selection problem, Huffman’s Codes, Minimum Spanning Tree, Kruskal’s Algorithm, prim’s Algorithm, dijkstra’s Algorithm, etc. Lecture : 6
5. Randomized Algorithms and Amortized Analysis : Basics ideas of randomized Algorithms (Las Vegas and Monte Carlo types), Simple examples (Randomized Quick sort and its analysis, Min-cut algorithm and its analysis), Amortized analysis and its significance (Illustration through examples). Lecture : 6
7. **Introduction to NP-Completeness**: Basic concepts. **Lecture**: 3

Text Books:
1. Introduction to Algorithm, 2e, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, PHI.
2. Beginning Algorithms by Simen Harris, James Ross, Wiley India.

Reference Books:
1. The design and analysis of computer algorithms by A.V. Aho, J.E. Hopcroft and J.D Ullman, Pearson Education.
2. Algorithms – Introduction to Design & Analysis by S.Basse, Pearson Education
3. Algorithms and Complexity by H.S.Wilf, PHI.

05 1X07 **WEB APPLICATION DESIGN AND DEVELOPMENT**

L- T- P : 3- 0- 3 ** **Credit : 5

1. **Database Connectivity**: Concept of JDBC (Java Database Connectivity), working with SQL, Stored Procedures. **Lecture**: 5
2. **Client Server Side Programming**: Java Script- Introduction, data types, variables, operators, Array Objects, Date, Objects, String Objects, Document Object Model, Image Object, Event handling, Browser Object, Window Object, Location Object, History Object, Submit event and data validation. Understanding Servlet programming, its Life- Cycle, Servlet Configuration, understanding Servlet sessions, understanding of JSP and JSLT, JSP documents, Elements, tag extensions, tag libraries, validation, translation time mechanism translation- time classes, Understanding Java Server Pages Standard Tag Library, tags in JSLT, core tag library, XML tag library using Internationalization Actions. **Lecture**: 20
4. **Network Programming**: Java Socket programming for TCP and UDP, RMI (Remote Method Invocation). **Lecture**: 2
5. **Case Study**: Web Applications, Web Applications Life Cycle, Enterprise Application Development process, Deploying Web Applications. **Lecture**: 5

Text Books:
2. Core Java TM Volume II by Cay S. Horstmann & Gray Cornell (Pearson)

Reference Book:
1. J2EE 1.4 Bible by McGovern (Wiley India)

05 1X08 **FUNDAMENTALS OF DATA COMMUNICATION**

L- T- P : 3- 0- 0 ** **Credit : 3

1. **Introduction**: Data Communication, Network Architecture, Protocols & Standard. **Lecture**: 2
2. **Signal, Noise, Modulation & Demodulation**: Signal analysis, Signal-to-noise ratio, Bit rate, Baud, Digital Modulation. **Lecture**: 3
4. **Multiplexing**: Time Division Multiplexing, Frequency Division Multiplex, Frequency Division multiplexing. **Lecture**: 4
5. **Data Communication Codes, Error Control and Data Format**: Data communication Character codes, Bar codes, Error Control & Detection, Character Synchronization. **Lecture**: 4
6. **Data Communication Hardware**: Data Communication Hardware & circuits, serial interfaces. **Lecture**: 3
7. **Data Communication Equipment**: Digital service unit, Channels service unit, Bell- system Compatible voice band modem. Asynchronous and Synchronous voice band modem. **Lecture**: 5
8. Circuit Switching: Switching Networks, Circuit Switching Networks, Circuit Switching concepts, Routing in Circuit Switching Networks Control Signaling. Lecture: 5
10. Asynchronous transfer mode: Protocol Architecture, ATM Logical Connection, ATM Cell, Transmission of ATM Cells, ATM Service categories, ATM adaptation layer. Lecture: 4
12. Integrated Service Data Network: Public Switch Data Network. X. 25 user-to-network Interface protocol. ISDN Lecture: 4

Text Book:
1. Introduction to data Communication and Networking by Wayne Tomasi Pearson Education.
3. Communication system and network by Ray Horak, Wiley India.

05 1X09 DATABASE SYSTEMS
L - T – P: 3–0–3 Credit : 5
2. Data Modeling: Entity-Relationship Model, Basic concepts, design issues, mapping constraints, keys, E-R features, design of an E-R database schema, reduction of an E-R schema to tables. Lecture: 5
3. Relational Model: Structure of relational database, relational algebra, tulip relational calculus, domain relational calculus, extended relational-algebra operations, modification of the database and view, SQL and Other. Lecture: 5
4. Relational Languages: Background, basic structure, set operations, aggregate functions, null values, nested sub-queries, derived database, joined relations, DOL embedded SQL and other SL features, query-by-example. Lecture: 5

5. Integrity Constraints: Domain constraints, referential integrity, assertions, triggers and functional dependencies. Lecture: 3
6. Relational Database Design: Pitfalls in relational database design, decomposition, normalization using functional, multi-valued and join dependencies, domain key normal form and alternative approaches to database design. Lecture: 5
7. Query Processing: Overview, catalog information for cost estimation, measures of query cost, selection operation, other operations, evaluation of expressions, Translating SQL query into Relational Algebra, transformation of relational expressions, query optimization. Lecture: 5
8. Transactions: Transaction concept, transaction state, System log, Commit point, Desirable Properties of a Transaction, concurrent executions, serializability, recoverability, implementation of isolation, transaction definition in SQL, Testing for serializability. Lecture: 8

Text Books:
2. Fundamental of Database System by Elmasri, Navthe, Somayajulu, and Gupta, Pearson Education.
3. Introduction to Database Management system by ISRD Group, Tata McGraw Hill.
4. An Introduction to database system by C.J. Date, A. Kanana, S.Swamynathan, Pearson Education.

Reference books:
1. Database management System by Rajesh Narang, PHI
2. Database Systems by Rob Coronel, Galgotia Publication.

05 1X10 PRINCIPLES OF PROGRAMMING LANGUAGES
L- T- P : 3–0–0 Credit : 3
3. **Language Translation Issues**: Programming Language Syntax, Stages in translation, Formal Translation model (BNF Grammars, etc.), Formal properties of Languages, Languages Semantics Program Verification.

 Lecture: 5

4. **Data Types**: Properties of Types and Objects, Scalar Data Types, Composite Data Types, Structures Data Types, Abstract Data Types, Encapsulation by subprogram, Type Definitions.

 Lecture: 4

5. **Inheritance**: Derived class, Abstract Class, Inheritance & software Reuse, Polymorphism.

 Lecture: 4

6. **Sequence Control**: Implicit & Explicit Sequence control, Sequencing with Arithmetic Expression Sequence control, between statements, sequencing with Non-arithmetic Expression.

 Lecture: 4

7. **Subprogram Control**: Subprogram sequence control, Attributes of Data Control Parameter transmission, Static Scope, Dynamic scope, Block Structure.

 Lecture: 5

8. **Storage Management**: Element Requiring Storage. Programmer and system Controlled Storage, Static storage management, Heap storage management.

 Lecture: 4

 Lecture: 4

10. **Case Study**: Comparison between Ada, C, C++, Fortran, Java, LISP, ML, Perl, Prolog, Smalltalk, Postscript.

 Lecture: 4

Text Book:

1. Programming Languages: Design and Implementation, 4/e by Terrance W. Pratt, Marvin V. Zelkovitz, T. V. Gopal, Pearson Education.

Reference Books:

1. Fundamentals of Programming Languages by E. Horowitz, Galgotia,

05 1X11 FORMAL LANGUAGES AND AUTOMATA THEORY

L–T–P : 3–0–0

1. **Introduction to Automata**: Study and central concepts of automata theory, An informal picture of finite automata, deterministic and non-deterministic finite automata, application of finites automata, finite automata with epsilon transitions.

 Lecture: 3

2. **Regular expression and Languages**: Regular expression, finite automata and regular expressions, applications of regular expressions, algebraic law of regular expressions.

 Lecture: 6

3. **Properties of Regular Language**: Proving languages not to be regular, closure properties of regular languages, equivalence and minimization of automata.

 Lecture: 4

4. **Context-free Grammars and Languages**: Parse trees, Applications of context free grammars, Ambiguity in grammars and languages.

 Lecture: 6

5. **Pushdown Automata**: Pushdown automata (PDA), the language of PDA, equivalence of PDA’s and CFG’s, deterministic pushdown automata.

 Lecture: 6

6. **Properties of Context-Free Languages**: Normal forms of context free grammars, pumping lemma for context free languages, closure properties of context free languages.

 Lecture: 5

7. **Introduction to Turing Machine**: The Turing machine, programming techniques for Turing machine, extensions to the basic Turing machine, restricted Turing machines, Turing machines and Computers, Undecidable Problem about Turing machine, Post’s Correspondence Problems.

 Lecture: 7

8. **Intractable Problem**: The Classes P & NP, NP-Complete Problem, Example of P & NP Problem.

 Lecture: 5

Text Book:

1. Introduction to Automata Theory, Languages, and Computation, 2e by John E. Hopcroft, Rajeev Motwani, Jeffery D. Ullman , Pearson Education.

2. Theory of Computer Science (Automata, Languages and Computation), 2e by K. L. P. Mishra and N. Chandrasekharan, PHI

05 1X12 REAL TIME SYSTEMS

L–T–P : 3–0–0

1. **Introduction**: Hard vs. Soft real time systems, a reference model of real time system.

 Lecture: 2
2. **Real-time scheduling**: Clock driven approach, Weighted Round-robin approach, Priority driven approach, Dynamic vs. static system, EDF and LST algorithm, Offline vs. online Scheduling.

4. **Multiprocessor scheduling, Resource Access Control, and Synchronization**: Model of multiprocessor & distributed systems, task assignment, multiprocessor Priority-ceiling protocol, Scheduling algorithm for end-to-end periodic tasks, schedulability of fixed-priority end-to-end periodic Tasks, Predictability & Validation of dynamic multiprocessor system, Scheduling flexible computations and tasks with temporal distance constraints.

5. **Real-Time Communication**: Model of Real-Time communication. Priority based discipline for switched network, weighted round-robin service disciplines, medium access-control protocol of broadcast network.

Text Books:
1. Real-Time system by Jane W. S. Liu, Pearson Education
3. Real-time Systems Design and analysis: an Engineer Handbook by Laplante, PHI

Reference Books:
1. Embedded Real Time system concept design and programming by Dr. K. V.K.K. Prasad, Willy India.

COMPUTER NETWORKS

L–T–P : 3–0–0

3. **The Data Link Layer**: Need for Data Link Control, Service provided by the Data Link Layer, Frame Design Consideration, Flow control Mechanism, Data Link Error control, Error Control in Stop-and-wait Mechanism & Sliding Window Mechanism, Sequence numbering, Piggybacking Acknowledgements, Data Link Management.

4. **MAC Protocols**: Random access Protocols – ALOHA.

5. **IEEE 802.3 Ethernet**: Contention Access, CSMA/CD, Physical Topology of Ethernet, Ethernet Repeater, Types of Ethernet.

7. **The network layer**: network layer design issue, purpose of network layer, Functions of the Network Layer.

8. **Introduction to Internet Protocol**: IPv4 Format, ICMP.

10. **Introduction to Transport Layer**: TCP & UDP.

11. **Introduction to Application Layer**: TCP/IP Application Protocol.

Text Book:
2. Computer Network, 4e, by Andrew S. Tenenbaum, Pearson Education/ PHI.
3. Data Communication and Computer Networks, by Prakash C.Gupta, PHI.

Reference Books:
3. Computer Networking, by Stanford H. Rowe, Marsha L. Schuh

SOFTWARE ENGINEERING

L–T–P : 3–0–3

2. **Software Life Cycle Models**: Waterfall, prototyping, Evolutionary, Spiral models and their comparisons.

3. **Software Project Management**: Project Manager responsibilities, project planning, Project Size estimation Metrics, Project Estimation, Techniques, COCOMO, Staffing Level Estimation, Scheduling, Organization & Team Structures, Staffing, Risk Management, S/W Configuration Management.

5. **Software Design**: Overview, Cohesion and Coupling, S/W Design Approaches, Object- oriented vs. Function- Operated Design.

7. **Object Modeling using UML**: Overview, UML, UML Diagrams, Use Case Model, Class Diagram etc.

8. **Object Oriented Software Development**: Design Patterns, Object- Oriented analysis and Design Process, OOD Goodness Criteria.

9. **User Interface Design**: Characteristics, Basic Concepts, Types, Components Based GUI Development, User Interface Design Methodology.

14. **Software Reuse**: Basic Issues, Reuse Approach, Reuse at Organization Level.

Text Books:

1. Fundamentals of Software Engineering by Rajeev Mall, PHI.
3. Software Engineering A. Practitioner's Approach by Pressman, MGH.

Reference Books:

1. Software Project Management From Concept to Development by Kieron Conway, Dreamtech Press.
2. Software Engineering by Sommerville, Pearson Education.
3. Software Engineering by Jawadekar, TMH.

05 1X15 DISTRIBUTED COMPUTING

<table>
<thead>
<tr>
<th>L-T-P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0-3</td>
<td>5</td>
</tr>
</tbody>
</table>

 Lecture: 5

2. **Massage Passing**: Introduction, Design features, Issues in IPC by message passing, synchronization Buffering, Multidiagram messages, encoding and decoding message data.
 Lecture: 4

 Lecture: 10

 Lecture: 9

 Lecture: 4

6. **Process Management**: Process Migration, Threads
 Lecture: 2

 Lecture: 8

Text Book:

2. Distributed Computing by Hagit Attiya and Jennifer Welch, Wiley India.
05 1x16 COMPILER DESIGN
L-T-P : 3-0-3
Credit : 5

1. Introduction to Compilers : Compilers and translators, The phases of a compiler, Compiler writing tools, The lexical and System structure of a language, Operators, Assignment statements and parameter translation.

5. Type Checking : Static Dynamic Checking, Type expression, Type Checking, Type Equivalence, Type Conversion.

6. Symbol Tables : Structure of Symbol Table, Simple Symbol Table (Linear Table, Ordered List, Tree, Hash Table, Scoped Symbol Table (Nested Lexical Scoping, One Table per Scope, One Table for all Scopes).

Text Books:
2. Compiler Design by Santanu Chattopadhyay. PHI

Reference Book

Programming Lab (System Programming)
Design of lexical analyzers. Design of parsers like recursive – descent parser for a block structured language with typical constructs, Typical exercises using LEX and YACC, Quadruples/Triplex generation using LAX and YACC for a subset of a block structured language,LR (0), SLR, LALR error detection and recovering with code optimization.

05 1x17 ARTIFICIAL INTELLIGENCE
L-T-P : 3-0-3
Credit : 5

1. Introduction : Why Al, Importance of AI. LISP, Prolog and other programming language for AI.

5. **Uncertainty**: Non monotonic & monotonic reasoning, confidence factors, Bayes theorem, Dempster & Shafer’s, Theory of evidence, Non-classical logic, Fuzzy reasoning.

6. **Natural Language Processing**: An Introduction to Natural language Understanding, Perception, Learning.

7. **Applications of Artificial Intelligence**: AI in E-commerce, AI in Industry, AI in Medicine

Text Books:
1. Introduction to Artificial Intelligence by Rajendra Akerkar, PHI
2. Introduction to Artificial Intelligence by Eugene Charniak, Pearson Education.
4. Introduction to Artificial Intelligence & Expert system by Dan W. Patterson, PHI

Reference Book:
3. Artificial Intelligence application programming by M. Tim Jones, Dreamtech Press

Programming Lab (AI)
Implementation in all algorithms in LISP/Prolog

CRYPTOGRAPHY

L–T–P : 3–0–0

5. **System Security**: Intrusion detection, Password Management, Virus countermeasure, Denial of Service Attack, Firewall design principles, Trusted System.

Text Book

Reference Books
1. Beginning Cryptography with Java by David Hook, Wiley Dreamtech.

MOBILE AND WIRELESS COMPUTING

L–T–P : 3–0–0

1. **Introduction**: Mobile computing, Middleware and Gateway
2. **Mobile Computing Architecture**: Architecture for mobile computing, Design for mobile computing, Mobile computing through Internet. **Lecture**: 3
3. **Mobile Computing through telephony**: Multiple access, Mobile computing through telephone, IVR system, voice XML. **Lecture**: 3
4. **The Mobile Radio Environment**: Representation of a mobile radio signal, Causes of propagation path loss and Classification of channels, Definitions of necessary terms (averages, PDF, CPD etc.), Delay spread and coherence band width, Diversity schemes, Combining techniques. **Lecture**: 2
5. **Mobile Radio Interference**: Co-channel and adjacent-channel interference, Near-end-to-far end ratio, Inter symbol and Simulcast Interference. **Lecture**: 2
6. **Frequency Plans & Cellular Concept**: Channelization schemes and frequency reuse, FDM, TDM, Spread Spectrum & Frequency hopping, Cellular concept, Frequency reuses and cell separation, HO, Spectral efficiency and cellular schemes, Separation between co-channel cells. **Lecture**: 8
7. **Digital Cellular Mobile System**: GSM, GPRS, Numbers & Identities for Mobile. **Lecture**: 8
8. **Personal Area Network**: Bluetooth technology, Protocol and etc. **Lecture**: 8
9. **Cellular CDMA**: Narrowband & Wideband wave propagations, Key elements in designing cellular, Spectrum techniques in modulation, Capacities of multiple-access schemes, DS-CDMA, FH-CDMA, TH-CDMA. **Lecture**: 5
10. **Mobile-IP**: IP packer delivery, agent advertisement & discovery, Registration, Tunneling and encapsulation, IPv6, DHCP, Ad-hoc network, Mobile Transport layer. **Lecture**: 4
11. **WAP**: WAP architecture, Wireless Markup language, WML Script, MMS, Case study of Nokia phone simulator. **Lecture**: 4

Text Books:
4. Mobile Computing by Hansmann. Wiley India.
5. Mobile and Personal Communication system & services by Raj Pandya. PHI.

Reference Books:
2. Cracking the code WAP Bluetooth and 3G programming by Dreamtech Software Team.

PROJECT – 1

L–T–P : 0–0–6

Credit : 4

INDUSTRIAL TRAINING

L–T–P : 0–0–0

Credit : 2

DATA MINING

L–T–P : 3–0–3

1. **Introduction**: Motivated Data Mining, Data Mining on what kind of Data, Data Mining Functionalities, Classification of Data Mining System, Major issues in Data Mining. **Lecture**: 3
2. **Data Warehouse and OLAP Technology for Data Mining**: Data Warehouse, Data Warehouse Architecture, Data Warehouse Implementation, Development of Data cube technology, Data Warehousing to Data Mining. **Lecture**: 5
3. **Data Preprocessing**: Data cleaning, Data Integration and Transformation, Data Reduction, Discrimination and concept Hierarchy Generation. **Lecture**: 4
4. **Data Mining Primitives, Primitives, Languages and System Architectures**: Data Mining Primitives, Data Mining query language, Designing GUI on a Data Mining query language, Architectures of Data Mining System. **Lecture**: 5
5. **Mining Association rules in large database**: Association rules mining, Mining single-dimensional Boolean Association rules from transaction database, mining multilevel Association rules from transaction database, Mining
multidimensional Association rules from relational databases and Data warehouses, Association mining to correlation analysis, Constraint based association mining.

Lecture : 7

6. **Classification and Prediction**: What is classification and prediction, Issues regarding classification and prediction, Classification by decision tree Induction, Bayesian Classification, Classification by Back propagation, Classification based on concepts from association rule mining, Prediction, Classification accuracy.

7. **Cluster Analysis**: What is cluster analysis, Types of data in cluster analysis, A categorization of major clustering methods, Partitioning methods, Hierarchical Methods, Density based methods, Grid based methods, Model based clustering methods.

8. **Applications and trends in Data Mining**: Data mining applications, Social impacts of Data Mining, Trends in Data Mining.

Text Books:
1. Data Mining Concepts and Techniques by Jiawei Han, Micheline Kamber, Elsevier.
2. Data Mining. A tutorial-based Primer by Roiger, Michael W. Geatz and Pearson Education.
3. Data Mining Introductory & advanced topic by Margaret H. Dunham, Pearson Education

Reference Books:
1. Data Mining : Next Generation Challenges and Future Direction by Kargupta, et al, PHI.
2. Data Warehousing, Data Mining & OLAP by Alex Berson Stephen J.Smith.

05 1x23 PARAELLEL COMPUTING
L–T–P : 3–0–0 Credit : 3

1. **Introduction to parallel computing**: Motivating parallelism, Scope, Processor Array, Multiprocessor, Multicomputer. Lecture : 3

3. **Parallel Programming Language**: Fortran 90, Sequent C, nCube C, OCCAM, C-LINDA. Lecture : 6

4. **Principle of parallel algorithm design**: Preliminaries, Decomposition techniques, Tasks & Interactions, Mapping techniques for load balancing, Parallel algorithm model. Lecture : 6

5. **Communication Operation**: One-to-all broadcast, All-to-all reduction, All-to-all Broadcast and reduction, All reduce & Prefix-sum operation, All-to-all personalized communication, Circular sift, Improving speed. Lecture : 7

7. **Dense Matrix Algorithm**: Matrix vector & Matrix-matrix multiplication. Lecture : 3

8. **Sorting and Graph algorithm**: Issues in sorting on parallel computers, Sorting networks, Different sorting techniques in parallel computing, Minimal spanning tree. All-pair shortest path, Connected components, Algorithm for Sparse Graph, Dynamic Programming. Lecture : 6

Text Books:
1. Introduction to Parallel Computing by Ananth Grama , Anshul Gupta , George Karypis. Vipin Kumar, Pearson Education.
4. Foundation of parallel processing by Ratan K Ghosh, Rajat Moona, Phalgun Gupta, Narosa publishing House

05 1x24 PROJECT – II
L–T–P : 0–0–9 Credit : 6

05 1x25 ADVANCED COMPUTER ARCHITECTURE
L–T–P : 3–0–0 Credit : 3

1. **Grain size & Latency**, Grain Packing and Scheduling, Calculation of communication delay, Bernstein’s conditions, Levels of parallelism, Properties of parallelism, Software parallelism, Hardware parallelism, Application modules of parallel computers. Lecture : 12

2. **Speedup Performance Laws**: Amdahl’s Law for fixed workload, Gustafson’s law for scaled problems, Memory bounded speedup model. Lecture : 12
PRAM models and PRAM variants.

Text Books:
2. Advance computer architecture by Dezso Sima, Terence Foutain and Peter Kacsuk, Pearson Education
3. Advance Computer Architecture: A System Design approach by Kain. PHI.

Performance Evaluation of Computer Systems

Lecture: 5

2. The Approach to Performance Evaluation: New system design, Development and tuning of existing system, Workload Analysis.

3. Job Processing and Simulation: Workload Definition and description, workload quantification in new system design and development, workload simulation, work stream generators, nature of a system model, Scheduling job performance measures, multiple server model, Simple job-processing simulator.

4. Measurements: Introduction what do we measure and how?

5. Monitoring System: Software monitors, hardware monitors, post measure data analysis, application program monitors.

7. Models: Why models, mathematical model, the modeling process.

8. System Reliability: H/w and S/w reliability, system reliability and availability, series and parallel systems, fault rates and failure probabilities.

10. Administration of the Computer Center and S/W Selection techniques: Duties and responsibility of the computer centre director or manager, recruitment techniques, importance of quality control, computer selection techniques, Installation planning, software selection and evaluation, Guide line for selecting appropriate languages.

Optimization Theory

Lecture: 4

1. Introduction to Optimization: Introduction engineering application of optimization, statement and classification of optimization problems, optimization techniques.

3. Linear programming: Introduction, standard form and geometry of LP; motivation to the simplex method, simplex algorithm, Two-phase method, Revised simplex method, duality and decomposition principle and sensitivity analysis.

5. Integer and Stochastic Programmers: Introduction, Integer linear programming, Methods for solving integer linear programming problems, Stochastic linear programming, Quadratic programming, separable programming.

Text Book:
1. Optimization for Engineering Design: Algorithm and example by Kalyanmoy Deb, PHI

Pattern Recognition

Lecture: 20

05 1x26

05 1x27

05 1x28
1. Pattern Recognition Overview: Overview, Pattern Recognition, Classification and Description, patterns and Feature Extraction, Training and Learning in PR System, Pattern Recognition Approaches
 Lecture: 6

 Lecture: 6

 Lecture: 10

 Lecture: 10

5. Neural Pattern Recognition: Introduction to Neural Networks, Neural Network Structure from Pattern Recognition Application, Physical Neural Network, The Artificial Neural Network Model, Neural Network Based Pattern Associators.
 Lecture: 10

Text Books:
1. Pattern Recognition and Image Analysis by Gose. Johnsonbaugh, Jost, PHI

05 1x29 INTRODUCTION TO JAVA PROGRAMMING LANGUAGE

1. Introduction to Java: Feature to Java, Java Virtual Machine, Differences between C++ and Java, Part of Java, API Document, Starting a Java Program, Important Classes, Formatting the Output
 Lecture: 2

2. Naming Conventions and Data Types: Naming Conventions in Java, Data types in Java, Literals.
 Lecture: 1

 Lecture: 4

4. Input and Output: Accepting Input from the keyboard, reading input in Java, Util, Scanner class, displaying output with System.out.print(), Displaying formatted output with string, Format.
 Lecture: 2

 Lecture: 3

6. Wrapper Classes: Number class, Character class, Byte class, Short class, Integer class, Long class, Float class, Double class, Boolean class, Math class.
 Lecture: 3

 Lecture: 2

8. Methods of Java: Method Prototype, Method Body, Understanding Methods, Static Methods, Static Block, The keyword ‘this’, Instance Methods, Passing Primitive Data Types to Methods, Passing Objects to Methods, Passing Arrays to Methods, Recursion, Factory Methods.
 Lecture: 4

 Lecture: 3

 Lecture: 3

11. Exceptional handling: Errors in Java Program, Exceptions throws and throw clause, Types of exceptions, Re-throwing an exception.
 Lecture: 2

12. Threads: Single and Multitasking, Creating and terminating the thread, Single and Multi tasking using threads, Deadlock of threads, Thread communication.
 Lecture: 2

13. Introduction to AWT and Applets: AWT components, Creating and closing the frame, Drawing in the frame, Displaying dots and text in the frame, Event Handling, Listeners and Listener methods, Creating and uses of Applets, An applet with swing components, Applet parameters.
 Lecture: 4
14. **Introduction on Java database connectivity**: Database servers and clients, JDBC. Connecting to a Database, Stored Procedures and Callable Statement, Storing file and Image into database, retrieving a file and images from database, Types of JDBC drivers.

Lecture : 4

Text Books:
1. Core Java by R Nageswara & Kogent Solution Inc, Dreamtech.

Reference Books:
1. Professional Java, JDK 6 Ed. by Richardson Avondolio Wrox.

05 1x30 **GENETIC ALGORITHMS**
L–T–P : 3–0–0
Credit : 3

1. **Introduction to Genetic Algorithm**: Genetic Algorithms, Traditional and Search Methods and their Differences, A simple Genetic Algorithm.
 Lecture : 6

 Lecture : 6

 Lecture : 15

 Lecture : 15

Text Books :
1. Genetic algorithm by David E. Goldberg, Pearson Education.
2. Introduction to Genetic Algorithm by Mitchell, PHI.

05 1x31 **NATURAL LANGUAGE PROCESSING**
L–T–P : 3–0–0
Credit : 3

1. **Introduction**: Structure of English (and/or some Indian Language), Basic Parsing Techniques, Augmented Transition, New York Grammars, Lexical Functional Grammar, Generalized Phrase, Structure Grammar, Deterministic Parsing
 Lecture : 10

 Lecture : 12

3. **Algorithms** and data structures for implementing natural language processing systems.
 Lecture : 10

4. **Applications**: Question Answering Systems, Natural Language Interfaces to Databases, Machine Translation.
 Lecture : 10

Text Books:
1. Natural Language Processing, A Paninian Perspective by Akshar Bharati PHI.

05 1x32 **COMPUTATIONAL GEOMETRY**
L–T–P : 3–0–0
Credit : 3

1. **Geometric Data Structures**: Points, Polygons, Edges, Geometric objects in space, Finding intersection of a line and a triangle.
 Lecture : 4

 Lecture : 10

 Lecture : 10

4. **Plane-Sweep Algorithms**: Finding the intersections of line segments, Finding convex hulls, Contour of the union of rectangles, Decomposing polygons into monotone pieces.
 Lecture : 8
5. **Divided and conquer Algorithms**: Computing the intersection of half planes, Finding the kernel of polygon, Finding Voronoi regions, Merge Hull, Closest points, Polygon triangulation. Lecture: 6

COMPUTER GRAPHICS

L–T–P : 3–0–0 Credit: 3

3. **Graphical Workstations**: Routing output to workstations, Types of GKS, Workstations. Lecture: 8

4. **Evaluation of Various 3D Models**: Computer Animation, 3D Shaded computer Animation the use of 3D abstract Graphical types in computer Graphics and Animation, 3-Dimensional Reconstruction, A case study. Lecture: 16

Text Books:

3. Computer Graphics by Hearn, and Baker, PHI.

NEURAL NETWORKS AND APPLICATIONS

L–T–P : 3–0–3 Credit: 3

1. **Introduction**: Background, Knowledge Based Information Processing, Neural Information Processing, Hybrid Intelligence. Lecture: 2

4. **Knowledge-Based Neural Networks**: Introduction, Rule-Based Neural Networks, Radial Basics Function Networks (RBFN), Network Training, Network Revision, Issues, Example of Theory Revision, Decision of Theory Revision, Decision Tree-Based Neural Networks, Constraint-Based Neural Networks. Lecture: 10

5. **Incremental Learning**: Introduction, Fundamental Principles, Symbolic Methods, Neural Network Approaches, The Incremental RBCN. Lecture: 4

6. **Mathematical Modeling**: Introduction, Mathematical Modeling in General, The applications of Neural Networks, Neural Networks as Mathematical Models, Knowledge-Based approaches. Lecture: 4

7. **Discovery**: Introduction, Symbolic Methods and Neural Network Methods. Lecture: 4

8. **Structures and Sequences**: Introduction, Connectionist Representation, A Hybrid Network Approach. Lecture: 3

9. **Learning Spatiotemporal Patterns**: Introduction, Spatio-temporal Neural Networks, Learning Procedures, Knowledge Procedures. Lecture: 3

Text Books:

1. Neural Network by Simon Haykin, Pearson Education/PHI
3. Neural Network using MATLAB 6.0 by Siva Adam , Tata McGraw Hill

SPEECH PROCESSING

L–T–P: 3–0–0 Credit: 3

2. **Time Domain Methods for Speech Processing**: Time domain parameters of speech, Methods for extracting the parameters. Zero crossing, Auto correlation function, Pitch estimation. **Lecture : 10**

3. **Frequency Domain Methods for Speech Processing**: Short-time Fourier analysis, Filter-bank analysis, Spectrographic analysis, Format extraction, Pitch extraction, Analysis. **Lecture : 8**

Text Book :
1. Speech and Language Processing by Daniel Jurafsky & James H. Martin, Pearson Education.

05 1x36 DISTRIBUTED DATABASE

L–T–P : 3–0–0

1. **Introduction**: Distributed Database System, Promises Complicating Factors, Problem Areas. **Lecture : 3**

2. **Distributed Database Architecture**: DBMS Standardization, Architectural Models, Distributed DBMS Architecture. **Lecture : 6**

4. **Semantic Data Control**: View Management, Data Security, Semantic integrity control. **Lecture : 6**

5. **Query**: Overview of Query Processing, Query Decomposition and data Localization, Optimization of Distributed Queries. **Lecture : 10**

6. **Introduction to Transaction Management**: Properties types of Transaction **Lecture : 3**

7. **Distributed DBMS Reliability**: Reliability Concepts and measures, Failures and fault Tolerance in Distributed Systems, Failures in Distributed DBMS. **Lecture : 6**

8. **Parallel Database System**: Database Servers, Parallel Architectures, Parallel DBMS Techniques, Parallel Execution Problems. **Lecture : 6**

Text Book :

Reference Book :
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGG.

04 1301 BASIC ELECTRONICS

L-T-P : 3-1-2 Credit : 5

1. **PN junction diode**: Depletion layer, barrier potential, forward and reverse bias, break down voltage, PIV characteristics of PN junction diode, knee voltage, ideal PN junction diode, junction capacitance, break down diode(zener diode).

 Photo diode and light emitting diode.

 Lecture : 10

2. **Rectifiers and filters**: Half wave and full wave rectifiers(centre tape and bridge), regulation ripple factor, R-C,L-C and Pi filters. Clipping and clamping circuit, voltage multiplier.

 Lecture : 8

3. **BJT introduction**: Basic theory and operation of PNP and NPN transistors, characteristics of C-B,C-E,C-C configuration.

 Biasing: Base bias, emitter feedback bias, voltage divider bias, load line, operating point. Incremental analysis using h model.

 Lecture : 12

4. **FET**: Introduction, operation, JFET parameters, JFET characteristics, JFET amplifiers.

 MOS FET: Introduction, operation, MOSFET parameters.

 Lecture : 4

5. **Feedback amplifiers**.

 Lecture : 2

 Lecture : 4

7. **Principle and application** of SCR and UJT.

 Lecture : 2

Text Books :

1. Electronic devices and circuit theory by Boylestad and Nashelsky, Pearson
2. Electronic principle by Albert Malvino & Davis J Bates, TMH
3. Art of electronics by Paul H Horowitz, Oxford

Reference :

1. Introduction to electronic circuit design by Spencer, Pearson.
2. Device electronics for integrated circuits by Muller And Kamins With Masun Chan, Wiley student edition

Basic Electronic Lab :

1. Introduction to DMM(digital multi meter)
2. Introduction to passive components(resistance, capacitance and inductors)
3. Introduction to cathode ray oscilloscope(CRO) - time period measurement., study of different wave forms, measurement of frequency of sinusoidal waveforms by Lissajou’s figure.
4. Introduction to connectors- multi-strand wires and single strand wires and bread boards.
5. Study of output characteristics of diode, BJT,FET,UJT & SCR.
6. Application of diodes, BJT, FET, UJT & SCR-Clipping & clamping, rectification, RC coupled CE and CS FET amplifiers, relaxation oscillators
7. Application of A 741- inverting amplifiers, summer amplifiers, difference amplifiers, integrator and differentiators.

Text Book : Lab manual by Maheshwari, PHI

04 1302 DIGITAL ELECTRONICS

L-T-P : 3-1-2 Credit : 5

1. **Digital Principle**: Analog vs Digital, Number system, Computer Codes, Digital Signals, Waveforms Positive and Negative logic, Logic Gate : basic, universal and others, Truth Table, Logic functions, IC Chips, Timing Diagram, Electrical analogy.

 Lecture : 4

2. **Boolean laws and theorems**: Logic functions, conversion of logic functions into truth table and vice versa. SOP and POS forms of representation, min terms and max terms, simplification of logic functions by theorems and Karnaugh's map, don't care conditions, design of special purpose computers and related practical problems.

 Lecture : 5

3. **Analysis and synthesis of combinational logic circuits**: Adder and substructures (look ahead adders), Multiplexers, de multiplexers, Encoders, decoders, code convertors, magnitude comparators, parity generators and checkers.

 Lecture : 6

4. **Integrated circuit logic families**: RTL, DTL, TTL, CMOS, IIL/I^2L (integrated injection logic & emitter coupled logic).

 Lecture : 4
5. **Sequential circuit blocks and latches**, flip flops - race around condition, master slave and edge triggered, SR, JK, D & T Flip Flop, shift registers, counters - synchronous and asynchronous: design of ripple counter.
 Lecture : 10

 Lecture : 4

7. **Use of building blocks** in designing larger systems such as digital to analog converters (DAC) weighted resistors and r-2r, analog to digital (ADC) - comparator, counter and succession.
 Lecture : 5

8. **Memories**: static and dynamic RAMs, ROM, EPROM, EEPROM.
 Lecture : 4

Text Books:
1. Digital systems - Principles and Applications by Tocci, Widmar and Jain, Pearson
2. Digital fundamentals by Floyd And Jain, Pearson

Reference books:
1. Fundamentals of VHDL design by Stephen Brown and Zovenkeo Vrasesic, TMH
2. Introduction To Logic Design With Cd Rom by Alan B Marcovity, TMH,
3. Fundamentals Of Digital Logic With Verilog Design by Stephen Brown, TMH
4. Modern digital electronics by R.P Jain, TMH

INTRODUCTION TO COMMUNICATION SYSTEMS

L-T-P: 3-0-3
Credit : 5

1. **Periodic signals** (sinusoidal, rectangular, saw tooth and triangular wave) and its Fourier series expansion with single side representation in real frequency domain and with double side representation in rotating phasor domain.
 Lecture : 3

2. **Aperiodic signal**: A signal pulse event and its Fourier transform; impulse response of a linear time invariant system, convolution and response to arbitrary input.
 Lecture : 3

3. **Block diagram** of communication system and comparative study of analog and digital communication.
 Lecture : 3

4. **Modulation** (upward frequency translation) & demodulation (downward frequency translation) and the need for modulation: broad classification of modulation [linear (amplitude-AM) and exponential (frequency-FM and phase-PM)]
 Lecture : 3

5. **Generation** of double side band (DSB) with carrier, double side band with suppressed carrier (DSBSC) and single side band with suppressed carrier: demodulation of double side band with carrier – incoherent detector or envelope detector, peak diode detector, coherent or synchronous detection of DSBSC and single side band with suppressed carrier.
 Lecture : 3

6. **Analog pulse modulation**: PAM, PWM, PPM and demodulation; comparative study of various analog pulse modulation; comparison of incoherent and coherent detection.
 Lecture : 3

7. **Superhetrodyne Receivers**: Intermediate Frequency and its advantages, alignment and tracking, image rejection and IC version of the Receiver.
 Lecture : 3

8. **Frequency Multiplexing** in carrier Telephony.
 Lecture : 1

9. **Generation of FM signals** (direct and indirect methods) and demodulation.
 Lecture : 3

10. **Comparative study** of SNR in AM, FM and PM System and use of emphasis Circuit in FM for SNR optimization.
 Lecture : 2

11. **Television**: block diagram of the transmitter and receiver: description and working of video camera; description working of B-W colour TV receiver; description of the composite signal in B-W colour TV.
 Lecture : 6

12. **CCD Flat Panel Displays**.
 Lecture : 3

Text Book:
1. Radio systems for Technicians by D.C. Green, Longman.

Reference Books:
1. Communication system by Bruce carison . TMH.
2. Electronic Communication system by Kennedy IV Edition. TMH.
4. Telecommunication system Engg. by Freeman John Wiley
5. Communication system by Haykin, Wiley

LABORATORY COMMUNICATION SYSTEMS

1. Use of Quadrant multiplier Chip for generating and synchronous detection of DSB suppressed carrier.
2. Characterization and design of SAW filter.

3. Use of saw filter as Band pass Filter for generating and synchronous detection of SSB suppressed carrier.

4. Characterization of ceramic or quartz filter and design of band Pass Filter using crystals Filters
5. Pilot Carrier Insertion in SSB with suppressed carrier signal and generating a synchronous carrier by sensing the pilot using PPL chip and using this carrier for synchronous detection.

6. Realization of 2nd order and 4th order filters using Switch Capacitors Elements and making a comparative study of switched capacitors and conventional filters.

8. Generation of FM using variable reactance of JFET.

10. Generation of AM signal using base/collector modulation and in coherent detection / envelope detection/diode peak detection of AM signal(DSB with carrier).

11. Study of AM receiver stage and checking the waveforms on CRO.

12. Study the FM receiver stage and checking the waveform on CRO.

Text Book:
1. Learning electronic communication through experimentation using electronic work bench by Berube, Pub. Pearson

Reference Books:
1. Communication system by Bruce Carison, TMH;
2. Electronic communication system by Kennedy, iv Edition, TMH
3. Television engineering by Grob

04 1x04 ANALOG ELECTRONICS

L-T-P : 3-0-3 Credit : 5

1. Four ideal amplifiers: Ideal voltage amplifiers, ideal current amplifiers, ideal transresistance amplifiers and ideal transconductance amplifiers and distortions(amplitude or harmonic distortions, frequency distortion and phase distortion); Lecture : 4

2. Mid frequency amplifiers:
 a. Analysis of CB,CE &CC amplifiers using hybrid model(chapter eight of integrated electronics by Millman & Halkias).
 b. Low and High Frequency analysis of CB, CE & CC (Chapter 11 and Chapter 12 except Section 12-10 and 12-11.
 c. rise time method for determination of f_b using the formula of t_r – 0.35 and 10% sag method for the determination of f_lower using sag method. Lecture : 15

4. Multistage amplifiers and band width shrinkage in multi stage amplifiers.

5. Incremental model of FET and incremental analysis of common source at low & high frequencies.

6. Noise and noise figure in amplifiers: Thermal noise, shot noise, flicker noise, Friss formula

7. Class A, Class B and Class AB power amplifiers with reference to Complementary Symmetry Amplifiers.

9. Tuned amplifiers-single tuned amplifiers

Text Books:
1. Micro Electronics by Millman And Grabel, McGRAW HILL
2. electronics by Millman & Halkias, McGRAW HILL

References:
1. Micro electronics circuit by Sedra and Smith, Oxford University;
2. Micro electronics circuit analysis and design, by Rashid, PWS publication house;
3. Semi conductor circuit application- an introduction to transistors and IC ’s by Malvino, TMH;
4. Electronic devices and integrated circuit- BP Singh and Rekha Singh, Pearson education
5. Electronic Principles, 7th Ed. by Albert Malvino & Davis J.Bates, TMH.

04 1x05 OPTICAL FIBER COMMUNICATION

L-T-P: 3-1-0 Credit : 4

1. Historical note of comparative study with respect to RF and microwave communication Lecture : 1
2. **Block diagram** of an optical fibre communication system

3. **Optical fibre** : Basic optical laws and definitions, principles of light propagation in fibres, ray theory, optical fibre materials, fibre fabrication, optical fibre cables

4. **Signal degradation in optical fibres** : attenuation, chromatic dispersion and inter modal dispersion, dispersion shifted and flattened fibres.

5. **Optical Modulator** : LED&LASER diodes-basic concepts, operation, modulation methods, power efficiency.

7. **Splices, Connectors, Couplers and Grating.**

8. **Optical Transmitters.**

9. **Optical Receivers.**

10. **Optical link Design.**

Text Book :

1. *Fibre Optic System* by John Powers, IRWIN;

References Books :

1. *Optical Fibre Communication* by Keiser. TMH;
2. *Optical Fibre Communication* by Senior, PHI;
3. *Optical Communication Systems* by Gowar. PHI
4. *Opto Electronics-An Introduction* by Wilson & Hawkes, PHI.
5. *Fiber Optic communication* by Palais, Pearson.
04 1x06 INTELLIGENT INSTRUMENTATION

L-T-P: 3-0-3
Credit : 5

Theory:
1. **Intelligence**, features characterizing intelligence, intelligent instrumentation system: features of intelligent instrumentation, components of intelligent instrumentation, block diagram of intelligent instrumentation.

 Lecture : 6

2. Signal amplification & attenuation (OP-AMP based), instrumentation amplifier (circuit diagram, high CMRR & other features), signal linearization (different types such as diode resistor combination, OP-AMP based etc.), bias removal signal filtering (output from ideal filters, output from constant – k filters, matching of filter sections, active analog filters).

 Lecture : 10

3. OP-AMP based voltage to current converter, current to voltage conversion, signal integration, voltage follower (pre amplifier), voltage comparator, phase locked loop, signal addition, signal multiplication, signal transmission, description of spike filter.

 Lecture : 10

4. Smart sensors: Primary sensors, excitation, compensation, information coding/processing, data compensation, standard for smart sensor interface.

 Lecture : 8

5. Interfacing instruments and computers: basic issues of interfacing, address decoding, data transfer control, A/D convertor, D/A convertors, sample & hold circuit, other interface considerations.

 Lecture : 10

Text Books:
1. Principles of measurements and instrumentation by Alan S Morris, PHI
2. Intelligent instrumentation by Bamay, G.C.Prentice Hall

Reference Books:
1. Sensors and transducers by Parranabis, PHI
2. Introduction to digital signal processing: MGH

INTELLIGENT INSTRUMENTS LAB:
As per syllabus experiments are to be framed. Minimum 8 experiments are required to be performed in a semester.

04 1x07 ELECTRONIC INSTRUMENTATION

L-T-P: 3-0-3
Credit : 5

1. **ERROR IN MEASUREMENTS**: classification of errors, statistical analysis of errors, probable errors and limiting errors.

 Lecture : 5

2. **ELECTRONIC INSTRUMENTS**: Special purpose CROs (double trace, storage and digital CRO), vector voltmeter, frequency meter, universal counter and its uses for measurement of frequency, time and pulse width.

 Lecture : 10

3. **WAVE ANALYSIS**: Wave analyser, frequency selective wave analyser and heterodyne wave analyser, distortion measurement, resonant circuit harmonic analyzer and fundamental harmonic analyzer, spectrum analyser.

 Lecture : 10

4. **MEASUREMENT OF NON ELECTRICAL QUANTITIES**: Piezoelectric transducers, digital displacement transducers,(shaft angle encoder) measurement of velocity, flow of liquid, liquid levels, digital temperature measurements.

 Lecture : 10

 Lecture : 12

Text Books:
2. Electronic instrumentation and measurements techniques by WD Coopers and A.D. Helfric, PHI

Reference Books:
1. Electronic measurements by Terman and Petit
2. Instruments and measurements for electronics by CM Herrick
04 1308 SOLID STATE PHYSICS & DEVICES

L-T-P : 3-0-3 Credit : 5

1. **History** of development of electronic devices.
 Lecture : 3

2. **Review of device physics** : Photo-ionic emission, thermionic emission, gas discharge tubes, vacuum tubes - diodes, triodes, tetrads and pentodes.
 Lecture : 3

3. **Crystal growth** : Bulk and epitaxial
 Lecture : 1

4. **IC technology** : Oxidation, diffusion, ion implantation, lithography, thin film deposition (CVD, sputtering, evaporation,) process integration, process flow for PN diodes, BJT and MOSFETS fabrication.
 Lecture : 5

5. **Physics and technology of classical diodes** :
 - Carrier Action Drift Mobility Drift Current, Resistivity, Diffusion Current, Total current, relation between the diffusion constants. And mobility (Einstein’s relationship). Recombination generation (Band to Band, R-G Centres, Auger, impact ionization). Equation of state Continuity equation, Minority Carrier Diffusion Equation.
 - PN Junction Diode Step junction, Built-in potential, Depletion width. Depletion Approximation. Electrostatic relationship (charge density depletion with potential, electric field)for Va=0 and Va<>0 Ideal Diode Equation(qualitative and quantitative derivation :Band Model , Assumptions Approximation .Boundary Condition), Deviation from Ideal (R-G Current, series Resistance ,High Level Injection).Junction Breakdown (Avalanche and Zener).Reverse Bias Junction Capacitance ,forward Bias Diffusion Capacitance ,Qualitative understanding of Turn on and Turn-off transients.
 - Zener Diode Backward diode Tunnel diodes Varactor diode, Schottky diode.
 Lecture : 13

6. **Physics and technologies of BJT** : operational considerations, modes and configurations, performance parameters (emitter efficiency, base transport factor, common base current gain, common emitter current gain and their derivation for an ideal transistor, deviation from ideal (base width modulation punch through, avalanche breakdown, geometrical effects, R-G current), small signal modelling, qualitative understanding of switch response.
 Lecture : 6

7. **Physics and technologies of FET** : Junction FET(theory of application, I-V relationship), MOS capacitor(energy band diagram, gate voltage relationship, capacitance- voltage characteristics), MOSFET (theory of operation, threshold voltage, I-V characteristics) NON IDEAL MOS (M-S work function difference, oxide charges, threshold adjustment and considerations)
 Lecture : 5

8. **Physics and technologies of UJT and SCR** : silicon controlled rectifier(theory of operation, switching consideration), uni junction transistor(theory of operation)
 Lecture : 2

9. **Photonics** : Photo diodes (pin and avalanche), solar cell, LED , solid state LASER diodes.
 Lecture : 3

10. **CCD and CCD cameras**.
 Lecture : 1

Text Book :

1. Solid sate electronic devices by Streetmen And Banerjee, Pearson:
2. Basic principles- semiconductor physics and devices by Nearmen,TMH
3. Semiconductor devices by Kano, Pearson

References :

1. Electronic Materials and Devices by Kasp. TMP.
2. Theory of Semiconductor Devices by Karl Hess, PHI.

04 1x09 ADVANCED ELECTROMAGNETIC FIELD

L-T-P: 3-1-0 Credit: 4

 Lecture : 15

4. Directional properties and Gain terminal impedance: Types of antenna – mutual impedance of antenna, travelling wave antenna, rhombic antenna, Yagi antenna.

5. Propagation of EMF waves, various paths, space waves, surface waves & propagation along spherical earth.

Text Books:
1. Electromagnetic waves and radiating systems by Jordan & Balmain, PHI.

04 1x10 DIGITAL SIGNAL PROCESSING
L-T-P: 3-0-3 Credit: 5

Theory:
1. Overview of DSP, Basic Elements of DSP system, Advantages of DSP over Analog, Classification of signals, Concept of frequency in continuous time and discrete time, continuous time and discrete time sinusoidal signals.

2. Discrete time systems: Linear time invariant, Response of LTI system – convolution sum, description of discrete time system by difference equation & complete solution of difference equation, Implementation of discrete time systems, Correlation of discrete time signals.

4. Discrete Time Fourier Transform, properties of DTFT.

5. Frequency domain representation of LTI Systems.

6. Sampling and reconstruction of Analog signals.

7. Discrete Fourier series, Discrete Fourier transform properties of DFT, FFT.

Text Books:

Reference Books:

Practical:
Perform the experiments using MATLAB:
1. To represent basic signals (Unit step, unit impulse, ramp, exponential, sine and cosine).
2. To develop program for discrete convolution.
3. To develop program for discrete correlation
4. To understand stability test
5. To understand sampling theorem
6. To design analog filters (low-pass, high pass, band pass, band stop)
7. To design digital filters (low-pass, high pass, band pass, band stop)
8. To design fir filters using windows techniques
9. To develop a program to compare direct realization values of IIR digital filters.
10. To develop a program for computing parallel realization values of IIR digital filters.
11. To develop a program to computing cascading realization values of IIR digital filters
12. To develop a program to computing inverse Z- transformation of a rotational transfer function.
04 1x11 MICROWAVE ENGINEERING
L-T-P : 3-0-3
Credit : 5
1. Microwave oscillators and amplifiers, advantages and uses of microwave, limitations of conventional vacuum tubes at UHF and microwave frequency, UHF and microwave BJT
 Lecture : 3
2. Muticavity klystron, Reflex klystron, Muticavity travelling wave type magnetron, Backward wave oscillator, Gunn oscillator, Tunnel diode, IMPATT diode.
 Lecture : 12
3. Microwave components : Coupling probes & Loops, Attenuator, sorting plunger, Magic tee, Directional coupler, Phase Shifters, Isolators & circulators.
 Lecture : 6
 Lecture : 6
5. Microwave receiver : Block Diagram representation, Varactor Diode as mixer, antenna noise and noise temperature.
 Lecture : 6
6. Antenna-Log-Periodic Antenna, Slot, Horn & Parabolic antenna (Dish Antenna).
 Lecture : 4
7. Microwave Links & space communication: Geostationary satellites, Up – Down Links, Fading effect, Atmospheric effects, and solar activities.
 Lecture : 6

Text Books:
1. Microwave devices and circuits by Samuel Y. Laio, PHI.

Reference Books:
1. Microwave & Radar Engineering by M. Kulkarni, Umesh Publications.
3. Microwave Principles by Reich et. Al., Van Hestrand

04 1x12 ELECTRICAL & ELECTRONIC MATERIAL
L-T-P: 3-1-0
Credit : 4
 Lecture : 6
2. Dielectric behavior of materials : Polarization, Dielectric constant at low frequency & high frequency, Dielectric loss, Piezo Electricity & Ferro Electricity.
 Lecture : 6
 Lecture : 6
 Lecture : 12
 Lecture : 2
6. Special classification of semiconductor material : Degenerate (Semi-Metal) and none degenerate semiconductor: Elemental and compound semiconductor, direct & indirect band gap material.
 Lecture : 3
7. Superconductors : Low & High temperature (YBaCuO) superconductors, Meissner effect, Applications.
 Lecture : 3
 Lecture : 6

Reference Books:

04 1x13 ELECTRICAL & ELECTRONIC MATERIAL LAB
1. Four point probe for resistively measurement.
5. Measurement of Planck’s constant by photo cell.
6. Dielectric constant Measurement.
8. Biot Savart’s Law Experiment.

04 1x14 PROJECT- I
L-T-P: 0-0-9
Credit : 6

04 1x15 INDUSTRIAL TRAINING
L-T-P: 0-0-3
Credit : 2

ELECTIVES

04 1x61 MICROELECTRONICS : IC DESIGN & FABRICATION
L-T-P: 3-1-0
Credit : 4
1. Introduction to MOS technology : Introduction to IC technology, MOS & related VLSI technology, Basic MOS transistors (Enhancement mode and depletion mode), NMOS process, CMOS process (P – Well, N – Well, Twin – tub processes), Bi CMOS process flow, aspects of CMOS & Bi CMOS devices.
Lecture : 6

2. Basic electrical properties of MOS circuits : MOSFET Threshold voltage, I – V relationship for MOSFET, MOSFET trans conductance, the pass transistor, NMOS inverter, Pull – UP to Pull – Down ratio for NMOS inverter driven by NMOS inverter and pass transistor, different forms of pull – up (Load resistor, depletion mode NMOS, Enhancement mode pull – up, CMOS pull – up), CMOS inverter, MOS transistor circuit model, Latch up in CMOS circuits, Bi CMOS inverter, comparative aspects of CMOS and Bipolar transistors.
Lecture : 7

3. MOS circuit design processes : MOS Layers, Stick Diagrams (NMOS design style, CMOS design style), Euler path and design optimization, design rules & layout (Lambda based design rules, contact cuts, double metal MOS process rules, CMOS Lambda based design rules), Two micron double metal double poly CMOS rules.
Lecture : 5

4. Basic circuit concepts : Sheet resistance, area capacitance of layers, inverter delays, driving large capacitive loads, propagation delay (cascaded pass transistors, design of long poly silicon wires), wiring capacitances (fringing fields, interlayer capacitance, peripheral capacitance).
Lecture : 6

5. Scaling of MOS circuits : Scaling models & scaling factors (gate area, gate capacitance, channel current density, channel resistance, gate delay, maximum operating frequency, saturation current, current density, power dissipation), Limitation of scaling.
Lecture : 4

6. Subsystem design and layout : Switch logic (pass transistors and transmission gates), gate logic (inverter, Two input CMOS NAND & NOR gates), Structure design of a parity generator.
Lecture : 4

7. Memory and aspects of system timing : System timing considerations, one transistor dynamic memory cell, three transistor dynamic RAM cell (Area, dissipation, volatility), RAM Arrays.
Lecture : 4

8. Practical aspects : Optimization of NMOS & CMOS inverters, input output pads, aspects of design tools (Graphical and tree layout, design verification, design rule checkers, circuit extractors, simulators).
Lecture : 4

9. Crystal growth and doping : Starting materials, Czochralski technique, Gradient freeze technique, Considerations for proper crystal growth (role of point defects, thermal gradients, turbulences, pull and spin rate, crystal orientation, crystal hardening techniques), Doping (rapid stirring conditions, partial stirring conditions, radial doping variations), Zone processes (Zone refining, Zone leveling, neutron transmutation doping)
Lecture : 3

Lecture : 2

Lecture : 2
12. **Ion-Implantation**: Penetration range (nuclear and electronic stopping, Transverse effects), Implantation damage, annealing, Ion – Implantation systems, process consideration, high energy and high current implants.
 - Lecture: 2

 - Lecture: 2

14. **Deposited Films**: Films deposition methods (vacuum evaporation, sputter deposition, Chemical vapor Deposition), Film characteristics (step coverage, grown habit, mechanical stress, electromigration)
 - Lecture: 2

15. **Etching and Cleaning**: wet chemical etching in silicon based processes, Dry physical etching, Dry chemical etching, Reactive Ion etching, Etch induced damage, Cleaning (wet and dry)
 - Lecture: 2

16. **Lithography**: Photoreactive materials, pattern generation and mask making, pattern transfer- optical printing, advanced techniques (short wavelength, multilayer resist, phase shifting masks, Electron beam techniques, X-ray printing), Mask defects, Pattern transfer defects
 - Lecture: 2

17. **Process Integration**: Isolation, (P-N junction, Mesa, Oxide), self alignment, local oxidation, planarization, metallization, gettering, Process flow for CMOS-
 - Lecture: 2

Projects:
Design, layout (using Electric freeware) and process integration of a MOS based circuit

Text Books:
1. Basic VLSI Design by Pucknell and Eshraghian
2. VLSI Fabrication Principles by Sorab Gandhi

Reference Books:
1. The science and engineering of Microelectronic Fabrication by Stephen Campbell
2. VLSI Design by Sujata Pandey and Manoj Pandey
3. CMOS VLSI design by Wolfe

04 1x62 **DIGITAL SIGNAL PROCESSORS**

L-T-P : 3-1-0
Credit: 4

1. **Introduction**: Discrete-Time Signals, Shannon’s sampling theorem, Difference equation description, characteristics of digital filters and time domain analysis, properties of discrete time system (linearity, time-variance, and convolution), BIBO stability, Z-transformation and their application in solving difference equations, Relationship between Laplace and Z-transforms.
 - Lecture: 7

2. **Frequency domain analysis**: Discrete Time Fourier Transform (DTFT) and Discrete Fourier Transform (DFT), Periodic convolution, Direct evaluation of DFT, FFT algorithms-decimation in time and frequency, Relationship between Fourier and Z- transforms.
 - Lecture: 8

3. **Digital Filter Structures**: Direct form I&II, cascade, parallel and ladder realization.
 - Lecture: 5

4. **Filter function Approximations and Transformations**: Review of approximations of ideal analog filter response, Butterworth filter, Chebyshev Type I & II.
 - Lecture: 6

5. **Frequency Transformations**: Frequency transformation in analog domain, frequency transformation in digital domain.
 - Lecture: 4

 - Lecture: 7

7. **Design of FIR Filters**: Symmetric and antisymmetric FIR filters, design of linear phase FIR filters using windows and frequency-sampling methods, design of optimum equiripple linear phase FIR filters, comparison of FIR and IIR filters.
 - Lecture: 8

Text Books:
1. Digital signal Processing, Principles Algorithms and Applications by John G. Proakis, Dimitris G. Mamalakis,
2. Digital signal Processing by Alan V. Oppenheim Ronald W. Schafer, PHI, India

Reference Book:

04 1x63 BIO-MEDICAL SENSORS AND TRANSDUCERS

2. **Study of biological sensors**: Sensors / receptors in the human body, basic organization of nervous system, neural mechanism and circuit processing. Chemoreceptor: hot and cold receptors, barro receptors, sensors for smell, sound, vision, osmolarity and taste. Sensor models in the time and frequency domains.

3. **Biochemical Transducers**: Electrode theory: electrode-tissue interface, metal-electrolyte interface, electrochemical interface, electrode impedance, electrical conductivity of electrode jellies and creams. Biopotential electrodes: microelectrodes, body surface electrodes, needle electrodes. Reference electrodes: hydrogen electrodes, silver-silver chloride electrodes, Calomel electrodes, Recording electrodes for ECG, EEG, and EMG, Transducers for the measurement of ions and dissolved gases, pH electrode, specific ion electrodes.

4. **Bio sensors**: Ion exchange membrane electrodes, enzyme electrode, glucose sensors, immuno sensors, Basic principles of MOSFET biosensors & BIOMEMS.

5. **Optical sensor**: Photo detectors, optical fiber sensors, and indicator mediated transducers, general principles of optical sensing, optical fiber temperature sensors. Pulse sensor: photoelectric pulse transducer, strain gauge pulse transducer.

Text Books :
5. “Principles of Medical Electronics & Biomedical Instrumentation” by Rao & Guha, University Press, India.

Reference Books :
1. “Regulation & Control in Physiological System” by Iberall & Guyton, Instruments Society USA.

04 1x64 TV ENGINEERING

1. **Picture transmission**, sound transmission, picture reception, sound reception synchronization, receiver controls, color television. Analysis and Synthesis of Television Pictures: Gross structure, image continuity, number of scanning lines, flicker, fine structure, tonal gradation. Video signal dimensions, horizontal sync details, vertical sync details, scanning sequence details, functions of vertical pulse train, sync details of 525-line system.

2. **Amplitude Modulation**, channel bandwidth, vestigial side band transmission, Transmission efficiency, complete channel bandwidth, reception of vestigial side band signals, frequency modulation, FM channel bandwidth, channel bandwidth for color transmission, allocation of frequency bands for television signal transmission, television standards.

5. **Compatibility**, natural light, color perception, three-color television camera, the luminance signal, values of Luminance & color difference signals on Colors, color television display tubes (Delta gun, PIL, Irinitron), Color signal transmission, bandwidth for color signal transmission.

Text Book:

1. Monochrome and Color Television by R R Gulati; New Age International.

Reference Book:

1. TV and Video Engineering by Dhake,; TMH.

04 1x65 **MICROCONTROLLERS**

<table>
<thead>
<tr>
<th>L-T-P</th>
<th>3-1-0</th>
<th>Credit</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Different types of microcontrollers: Embedded microcontrollers, external memory microcontrollers, processor architecture, Harvard Vs Princeton.</td>
<td>Lecture</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Microcontrollers: Overview of 8051 microcontroller, application areas, compares and contrasts Microprocessor and Microcontrollers.</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>8051 Microcontrollers Architecture: 8051 pin description, conception about program counter, data pointer register bank, flags, program status word (PSW), internal memory, RAM memory, ROM memory map, stack and stack pointer, input and output ports, External memory, counters and timers, serial data, input/output interrupts.</td>
<td>Lecture</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>8051 Addressing modes: Immediate and register addressing modes. Accessing memory using various addressing modes, Bit address for I/O and RAM.</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Basic assembly language programming concepts: assembling and running an 8051 program. 8051 assembly language programming concepts using arithmetic, logical, data mover, call, jump, loop, time delay instructions and subroutines.</td>
<td>Lecture</td>
<td>8</td>
</tr>
<tr>
<td>6.</td>
<td>I/O port programming: 8051 I/O port assembly language programming concepts.</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>Assembly language programs: based on rotate, compare and data serialization concepts.</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>8051 timers programming in assembly: 8051 timers programming concept, counter programming.</td>
<td>Lecture</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td>Interrupts programming in assembly: Programming timer interrupts.</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>Real world interfacing or 8051: Intelligent LCD display, interfacing keyboard to 8051.</td>
<td>Lecture</td>
<td>5</td>
</tr>
</tbody>
</table>

Text Books:

1. The 8051 Microcontroller and Embedded system by M.A. Mazidi, Pearson/PHI.

Reference Books:

1. The 8051 microcontroller by Kenneth Ayala, Thomson Learning.
3. Microcontrollers and Microcomputers by Fredrick M. Cady, Oxford University press

04 1x66 **DIGITAL SYSTEM DESIGN**

<table>
<thead>
<tr>
<th>L-T-P</th>
<th>3-0-3</th>
<th>Credit</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Introduction to Computer-aided design tools for digital systems.** Hardware description languages; introduction to VHDL, data objects, classes and data types, operators, Overloading, logical operators. Types of delay Entity and architecture declaration. Introduction to behavioural. Dataflow and structural models.

3. **VHDL Models and Simulation of combinational circuits such as Multiplexers, Demultiplexers, encoders, decoders, code converters, comparators, implementation of Boolean functions etc. VHDL Models and Simulation of Sequential Circuits Shift Registers, Counters etc.

4. **Basic components of a computer.** specifications, architecture of a simple microcomputer system, implementation of a simple microcomputer system using VHDL.

5. **Programmable logic devices**: ROM, PLAs, PALs, GAL, CPLDs, and FPGA, design implementation using CPLDs and FPGAs.

Practical :

1. Design all gates using VHDL.
2. Write VHDL program for the following circuits, check the waveforms and the hardware generated – (a) half adder (b) full adder.
3. Write VHDL program for the following circuits, check the waveforms and the hardware generated - (a) multiplexer (b) demultiplexer
4. Write VHDL program for the following circuits, check the waveforms and the hardware generated - (a) decoder (b) encoder
5. Write a VHDL program for a comparator and check the waveforms and hardware generated.
6. Write a VHDL program for a code converter and check the waveforms and the hardware generated.
7. Write the VHDL program for a FLIP-FLOP and check the waveforms and hardware generated.
8. Write the VHDL program for a counter and check the waveforms and hardware generated.
9. Write the VHDL program for the following circuits, check the waveforms and hardware generated - (a) register (b) shift register
10. Implement any three (given above) on FPGA/CPLD kit.

Reference books:

2. Digital design and modelling with VHDL and synthesis by KC Chang; IEEE computer society press.
5. VHDL Analysis & modeling of digital systems by Nawabi Z; McGraw Hill.

04 1x67 DIGITAL IMAGE PROCESSING

L-T-P : 3-0-3 Credit : 5

1. **INTRODUCTION:** Background, Digital image representation, Fundamentals step in image processing, Elements of a Digital Image Processing System.

DIGITAL IMAGE FUNDAMENTALS: Elements of visual perception, A simple image model, Sampling & quantization, Some basic relationship between pixels, imaging geometry.

2. **IMAGE TRANSFORMS:** Introduction to the Fourier transform, the discrete Fourier transform, Some properties of the Two – Dimensional Fourier transform, Other separable image transforms.

3. **IMAGE ENHANCEMENT:** Spatial domain methods, Frequency domain methods, Some simple intensity transformations, Histogram processing, Image subtraction, image averaging, Background, Smoothing Filters, sharpening Filters, Low pass filtering, high pass Filtering, Generation of spatial masks from frequency domain specification.

Text Books:

Reference Books:

04 1x68 BIOMEDICAL INSTRUMENTATION AND IMAGING
L-T-P : 3-0-3 Credit : 5

Text Books:
1. “Biomedical Instrumentation & Measurements” by Cromwell.
2. “Biomedical Instrumentation” by Dr. M. Arumugham
3. “Medical Electronics & Biomedical Instrumentation” by Rajarao & Guha.

2. Resting & action potential, Polarization & depolarization, Propagation & action potential, Bioelectronic potential. Lecture : 7

Text Books:
1. “Biomedical Instrumentation & Measurements” by Cromwell.
2. “Biomedical Instrumentation” by Dr. M. Arumugham
3. “Medical Electronics & Biomedical Instrumentation” by Rajarao & Guha.

3. Biopotential electrode, Active & passive transducers, Biochemical transducers. Lecture : 6

Text Books:
1. “Biomedical Instrumentation & Measurements” by Cromwell.
2. “Biomedical Instrumentation” by Dr. M. Arumugham
3. “Medical Electronics & Biomedical Instrumentation” by Rajarao & Guha.

4. ECG electrodes & leads, Measurement of blood pressure, blood flow & heart sounds. Lecture : 6

Text Books:
1. “Biomedical Instrumentation & Measurements” by Cromwell.
2. “Biomedical Instrumentation” by Dr. M. Arumugham
3. “Medical Electronics & Biomedical Instrumentation” by Rajarao & Guha.

5. Non-invasive instrumentation, Patient monitoring system, Electrical safety of patients in hospital, Defibrillator, Pace maker. Lecture : 6

Text Books:
1. “Biomedical Instrumentation & Measurements” by Cromwell.
2. “Biomedical Instrumentation” by Dr. M. Arumugham

6. Amplifiers & recorders, Diathermy (Microwave) structure & ultrasonic, Imaging system (X-ray, MRI & ultrasonic), Lasers in medicine. Lecture : 8
Text Books:
2. “Medical Instrumentation” by Rajarao.
3. “Medical Instrumentation (application & design)” by Webster.

7. Antennas for biomedical application & Applicator, Biomedical DSP (elementary idea). Biomedical micro-electro-mechanical system (Introductory idea)
Lecture : 6

Text Books:
1. Antenna Theory & Practice by R. Chatterjee
2. Biomedical digital signal processing by Wills J. Tompkin.

04 1x69 RADIO ASTRONOMY
L-T-P : 3-1-0 Credit : 4
1. Introduction : Brief history of radio astronomy and an overview of cosmic radio emission.
2. Radio source mechanisms : Very brief review of electrodynamics, radiative transfer, thermodynamics, atomic and molecular spectra. Thermal and non-thermal continuum mechanisms, thermal line emission and absorption, non-equilibrium line emission.
4. Galactic radio sources : Supernova remnants (SNR), diffuse non-thermal galactic emission, galactic HI, HII regions, interstellar and circumstellar masers, pulsars, active photospheres and accretion disks.
5. Extra-galactic radio sources : Cosmic microwave background radiation (CMBR), normal galaxies, radio galaxies, quasars, era of reionization (EoR).
6. Radio telescope antennas : Fourier optics, aperture illumination, beam polar pattern, descriptive parameters.
7. Radio telescope receivers : Noise temperature, low noise amplifiers (LNAs), filters, waveguide components, mixers and heterodyne systems.
8. Radiometry : Continuum radiometers, pulsar radiometers, polarimeters, spectrometers.

04 1x70 EMBEDDED SYSTEM DESIGN
L-T-P : 3-1-0 Credit : 4
1. Introduction : Embedded Systems Overview, Processor technology-General purpose processor (Software), Single purpose processors (Hardware), Application- Specific processors; IC Technology – Full - Custom / VLSI, Semicustom ASCI (Gate Array and standard cell), PLD, etc. Lecture : 5
2. Basic Concepts of Computer Architecture : Concepts, Memory, Input / Output, DMA, Parallel and Distributed computers, Embedded Computer Architecture, etc. Lecture : 7
3. Embedded Processors & Systems : The PIC Micro-controllers- A Table of two Processors, Starting Example using Minimal PIC 12C508 Computer and PIC 16C73 Processor, The AVR Microcontrollers- The Atmel At tiny 15 AVR Processor and Architecture, Downloading code; The Bigger AT 90S835 Processor and support Components, Bus interfacing, AT 90S8515 Memory Cycle and Bus Signals, Memory Maps & address decoding, programmable logic (PALs, LCAs or PLDs), Timing Analysis and memory management. Lecture : 10
4. MC 68000 Series Computer : A simple 68000 architecture; a simple 68000- based computer- reset circuit, Address decoder I/O (Multifunction Peripheral), Memory Interfacing to SRAM and EPROMs, Wait-state generator, etc. Lecture : 4
5. DSP- Based controller : DSP 56800 programmer’s model, A DSP 56805- based computer – DSP 56805 block Diagram, crystal oscillator circuit and module, reset and interrupts, External memory, interfacing to program, SRAM and data SRAM, Shared program and data memory, address decoder for two 32K SRAMs and Eight peripherals, JTAG. Lecture : 5
6 & 7. Peripherals and interfacing : Adding peripherals and interfacing – serial peripherals and interfacing - serial peripheral interface (SPI), Inter Integrated circuit (I²C), adding a real time clock with I²C), adding a small display

Text Books/Reference Books:
2. Embedded system design – A unified Hardware/Software Introduction by Vahid, Frank & Givargis, Tony, John Wiley & Sons, Replika press Delhi.

04 1x71 VLSI – DESIGN
L-T-P : 3-1-0 Credit : 4
THEORY
1. **Introduction to CMOS circuits** : MOS transistors, MOS transistor switches, CMOS logic, the inverter combinational logic, NAND gate, NOT gate, COMPOUND gates, multiplexers, memory-latches and registers circuit and system representation: Behavioral representation, structural representation and physical representation. CMOS processing technology: silicon semiconductor technology-An overview. Wafer processing. Oxidation, epitaxy deposition, lon-implamation and diffusion, The silicon gate process-basic CMOS technology, Basic n-well CMOS process, p-well CMOS process, twin tub process, silicon on insulator, CMOS process enhancement-interconnect, Circuit elements 3-D CMOS.
2. **Layout Design Rule** : Layer Representations, CMOS n-well Rules, Design rule of background scribe line, Layer assignment, SOI rule, Latch up, Physical origin of latch up, Latch up triggering, Latch prevention, Internal latch up prevention techniques, I/O latch up preventions.
3. **Switching Characteristics** : Analysis delay models, Empirical delay model, Gate delay, Power dissipation: static dissipation, Dynamic dissipation, Short-circuit dissipation, Total power dissipation, CMOS design methods, Design strategies, Hierarchy, Regularity, Locality.
4. **Programmable logic** , Programmable logic structure, Programmable interconnect and reprogrammable gate array : Xilinx programmable gate array, Algortomix,. Concurrent logic, Gate array design, Full custom mask design.

Text Books :
3. Modern VLSI Design system on silicon by Wayne Wolf: Addision Wesley Longman Publisher.
4. Basic VLSI Design by Douglas A Pucknell & Kamran Eshranghian; PHI
5. Digital Integrated Circuits: A Design Perspective by Jan M Rabaey; PHI

04 1x72 ALGORITHM DEVELOPMENT
L-T-P : 3-1-0 Credit : 4
1. **BASIC TOOLS ON DESIGNING ALGORITHMS** : What is an Algorithm? Algorithm specification and performance analysis, randomized algorithms.
2. **DIVIDE & CONQUER** : The general method, Application to binary search, Finding the maximum and minimum, Merge Sort, Quick sort, The problem of selection and Strassen's matrix multiplication.
3. **THE GREEDY METHOD** : The general method, Application to optimal storage on tapes, Job sequencing with deadlines, optimal merge patterns and minimum weight spanning trees.
4. **DYNAMIC PROGRAMMING** : The general method, Application to multistage graphs, all pairs shortest paths, optimal binary search trees, 0/1 Knapsack and travelling salesman problem, Flow Shop Scheduling.
5. **BACKTRACKING**: The general method, Application to 8- Puzzle problem, 8- Queen problem and sum of subsets.

6. **BRANCH & BOUND**: The method, Application to 0/1 Knapsack and travelling salesman problem and efficiency considerations.

7. **NP – HARD AND NP – COMPLETE PROBLEMS**: Introduction and basic concepts, non deterministic Turing machine, the classes of P and NP, NP – Hard Graph Problems, NP – Completeness of the satisfiability problem and Polynomial – space bounded problem.

Text Book :
1. Fundamentals of computer algorithms by E. Horowitz et. Al., Galgotia publication, New Delhi.

Reference Books :

04 1x73 BIOMEDICAL SYSTEMS AND ITS APPLICATIONS
L-T-P : 3-1-0
Credit : 4

 Lecture : 8

2. **Fluoroscopic imaging**, intensifying screen and scattered radiation, image intensifier, basic concept and instruments of the catheterization laboratory, ballooning and angioplasty techniques, digital subtraction technique, xeroradiography.
 Lecture : 4

3. **Characteristics of ultrasound**, ultrasound transducers, different mode of operation, characteristics of ultrasonic beam, interactions between ultrasound and matter, Design and application of real time ultrasound machine, Doppler techniques, Doppler transducer and modes of operation, color Doppler, Arrays, 3-D ultrasonography.
 Lecture : 5

4. **Computed Tomography (CT)**, basic principle, generations of CT scan machine, spiral CT, data accumulation, data handling system, components of CT scan machine, algorithms of image reconstruction, factors affecting image quality.
 Lecture : 4

5. **Principles of Magnetic Resonance Imaging (MRI)**, elementary physics at MRI, nuclear magnetic resonance, imaging of magnetization, Bloch equation, magnetic field gradient, receiver-transmitter and different RF coils for MRI machine.
 Lecture : 5

6. **Instrumentation and principle of operation** of Gamma camera, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), system performance and image reconstruction.
 Lecture : 5

7. **Radiation biohazards**, ionizing and non ionizing radiation hazards, radiation detecting equipment.
 Lecture : 3

8. **Instrumentation of Endoscope** and its attachments, Types of Endoscopes, cold light source, techniques applied in different type of endoscope for imaging.
 Lecture : 3

9. **Fundamentals of Digital Image Processing.**
 Lecture : 5

Text Books :
1. Introduction to Biomedical Engineering by Endrele, Blanchard, Bronzino
2. Handbook of Biomedical Instrumentation by R. S. Khandpur
4. Nuclear Diagnostic Imaging Practical Clinical Application by E. Edmund Kim & Thomas P. Haynie

04 1x74 DIGITAL COMMUNICATION AND TELECOMMUNICATION MANAGEMENT
L-T-P: 3-0-3
Credit : 5

Theory
1. **Comparison between Digital and Analog system**: Numbering systems, Baudet Code and ASCII code; Line encoding Formats
 Lecture: 3

2. **Information Theorem**: Information and Entropy, Hartley Shannon Theorem, Discrete channel with discrete noise, channel capacity and BW efficiency; Inter-symbol Interference (ISI) AND Equalizer, Communication through Fading Media.
 Lecture: 9

3. **Nyquist Sampling Theorem**: ADC, PCM, COMPANDING & RECONSTRUCTION; Source Encoding, Channel Encoding.
 Lecture: 12

4. **Digital Modulation Scheme**: Binary Shift Keying and M-ary keying.
 Lecture: 6

5. **Secure Communication**: Spread spectrum communication & Cryptography.
 Lecture: 6

6. **Special topics**: Various Switching System, protocol ISDN, LAN, ARPANET, ALOHA Ethernet, Internet.
 Lecture: 6

7. **Practical**
 As per syllabus experiments are to be conducted by the department.

Text books:

1. Telecommunication topics and applications of functions and probabilities in electronic communication by E. Brya. Prentice Hall:

Reference books:

1. Data communication and networking by Forouzan, TMH.
2. Data and computer communication by Satalling Pearson.
4. Internet working with TCP IP, Vol-1 Principles protocols and architecture by Douglas E. Corner, PHI
5. Internet working with TCP IP, Vol-II DESIGN, IMPLEMENTATION AND INTERNALS BY Douglous E. Corner & David stevens, PHI

04 1x75 SOFT COMPUTING TECHNIQUES AND ITS APPLICATIONS

L-T-P : 3-1-0 Credit : 4

 Lecture: 10

 Lecture: 8

 Lecture: 10

 Lecture: 9

 Lecture: 8

Text Book:

References:

04 1x76 IC ARCHITECTURE AND FABRICATION

L-T-P : 3-1-0 Credit : 4
1. Introduction: The IC fabrication general process flow diagram, Process modules (brief overview), Features of IC fabrication process, Modern clean rooms, Limitations of fabrication techniques.
 Lecture : 5
2. IC fabrication process: Simplified CMOS IC process flow and fabrication steps (brief overview), Lithography as a basic method of fabrication process, Comparative analysis of lithographic methods, Resolution and accuracy, Photolithography, Typical operations, Photo masks and fabrication methods, Advanced lithography, Technological equipment.
 Lecture : 10
3. Integrated circuits packaging: The role of IC package. Packages classification and materials, Packaging methods and technology, Thermal consideration in packaging, Interconnect levels (wire bonding, TAB process, flip-chip technique), High-performance packages.
 Lecture : 8
4. Fabrication constraints on layout: Common design rules, Scalable and micron design rules, Resolution constraints and alignment/overlap constraints, Design rules the interface between designer and process engineer.
 Lecture : 6
5. IC testing and yield analysis: Measurements and control for IC characterization, Accelerated tests, Defects and yield analysis of chips, Reliability and degradation of IC, The features of statistical process control for IC fabrication, Role of models in microelectronics technology.
 Lecture : 7

04 1x77 NANOTECHNOLOGY & ITS APPLICATIONS

L-T-P: 3-1-0 Credit : 4
3. Mechanical properties: Strength of nano crystalline SiC, Preparation for strength measurements, Mechanical properties, Magnetic properties.
4. Electrical properties: Switching glasses with nanoparticles, Electronic conduction with nano particles, Optical properties: Optical properties, special properties and the coloured glasses.
5. Process of synthesis of nano powders, Electro deposition, Important nano materials.
8. Nanomedicines: Developing of Nanomedicines, Nanosystems in use, Protocols for nanoparticle Administration, Nanotechnology in Diagnostics applications, materials for used in Diagnostics and Therapeutic applications, Molecular Nanomechanics, Molecular devices, Nanotribology, studying tribology at nanoscale, Nanotribology applications.

Text Books:
2. Nano Essentials by T. Pradeep/TMH

04 1x78 FIBER OPTICS AND NETWORKING TECHNOLOGY
1. **Introduction**: Generations of optical communication, Advantages, Elements of an optical fiber transmission link.

2. **Optical Fiber**: Classification of Fibers, Fiber materials and fabrication methods, Ray optics representation & Wave optics representation for step Index and Graded Index fibers, Modes, Phase & Group velocity, Goos-Hanchen Shift, Power flow in Step Index Fibers.

3. **Attenuation and Dispersion in optical fiber**: Signal attenuation and distortion in optical fibers, Dispersion effects in optical fibers.

4. **Optical Sources**: Structure and materials of LED and LD sources operating characteristics and modulation capabilities of the LED and LD sources. Source to Fiber Power launching and coupling, Lensing schemes for coupling improvement, Fiber to fiber couplings and alignment methods, Splicing techniques, Fiber Connectors.

5. **Optical Receiver**: Optical receiver configuration and performance, Pre-amplifier design for optical receiver, Analog and Digital receiver. Point to point transmission links, Wavelength division multiplexing, Optical data buses, Link power and rise time budget, Optical Amplifier.

7. **Potential applications and future prospects of optical fibers**: multimode intensity sensors and single mode, Interferometric sensors.

Text Books:

Reference Books:

6. “Fibre Optics Communication” by Harold Kolimbirls, Pearson Education.

04 1x79 **EMBEDDED SYSTEMS (REAL TIME SYSTEMS)**

2. **Hardware Considerations**: Basic Architecture, Hardware interfacing, Central Processing Unit, Memory, Input/output, Enhancing performance, other special devices, Non–Von Neumann Architectures.

4. **Software Requirements Engineering**: Requirements engineering process, Types of Requirements, Requirement specification for Real – Time Systems, Formal methods in software specification, Structured analysis and design, Object – Oriented analysis and the unified modeling language, Organizing the requirements document, Organizing and writing requirements, Requirements validation and review.

Text Book:

Reference Books:

04 1x80 MOBILE COMPUTING
L-T-P: 3-1-0 Credit: 4
2. Propagation & Fading: Propagation path loss, Free-space propagation model, Outdoor propagation models (Okumura model & Hata model), Indoor propagation models (Partition Losses in the same floor and between floors), Multipath fading, time dispersive and frequency dispersive channels, delay spread and coherence bandwidth, LCR and ADF. Lecture: 8
3. Diversity & combining Techniques: diversity Schemes (Space, frequency, field and polarization diversities) and combining techniques. Lecture: 4
5. The Cellular Concept: Frequency Assignment and Channel Assignment, Frequency Reuse, Handoff, sectoring, Repeaters for range extension, Microcell zone, Spectral efficiency, DS-SS, FH-SS. Lecture: 6
6. Antenna Design Parameters: Antennas used for Mobile Communications, Radiation patterns, Smart antenna (basic concept), Antenna location, Spacing and height in the base station and at the mobile unit. Lecture: 4

Text Books:
(2) “Wireless Communication Technology” by Roy Blake, Thomson – Delmar.

04 1x81 MOBILE AND SATELLITE COMMUNICATIONS
L-T-P: 3-1-0 Credit: 4
2. Basics of Mobile Communication: Limitations of conventional mobile system, mobile cellular communication - Introduction concept of frequency reuse, cluster size, cellular system architecture – mobile station, base station, MSC, Channel planning for wireless systems, Channel assignment strategies, call handover strategies, interference and system capacity, improving capacity in cellular systems – cell splitting, sectoring, repeaters for range extension, microcell zone concept. Lecture: 8
3. Global system for mobile communication: GSM services and features, system architecture, GSM radio subsystem, GSM channel types, Location updating and call setup, introduction to CDMA digital cellular standard, comparison between GSM and CDMA. Lecture: 6
4. Diversity & combining techniques and antenna design: Diversity schemes and combining techniques, Basic concept - Antennas used for mobile communication, smart antenna. Lecture: 4
5. **Multiple access techniques**: FDMA, TDMA, SDMA, CDMA, OFDM, capacity of cellular systems, spectral efficiency.

Lecture : 4

6. **Wireless networking**: Wireless LAN standards – IEEE .802.11, layered protocol architecture, technology – RF and IR wireless LAN, advantages and applications of wireless LAN, introduction to Wi-Fi, Bluetooth, WLL, WAP.

Lecture : 5

7. **Introduction to satellite communication**: Brief history and overview of satellite communication, Equations of the orbit, Satellite launching and launch vehicles, satellite subsystems - communication subsystem(transponder model), telemetry, tracking and command subsystem, Attitude & Orbit control subsystem, Electrical power supply subsystem, Satellite link design - Basic transmission theory, System noise temperature and G/T ratio for earth stations, Design of uplink and downlink, Earth station – description, Satellite applications.

Lecture : 12

Textbooks

1. Wireless communication principles and practice . 2nd ed. by T.S.Rappaport., PHI
2. Wireless communications and networks 2nd ed. by William Stallings, Pearson
3. Mobile cellular telecommunications systems by W.C.Y. Lee., TMH

Reference books

1. Mobile communication systems by schiller, Pearson.
2. Satellite communication systems Engg. by Pritchard, Pearson
03 1x01 BASIC ELECTRICAL ENGINEERING
L-T-P : 3-0-3 Credit : 5
1. **Introduction** : Electrical Elements and their Classification, KCL, KVL equation and node voltage method, D.C circuits steady state analysis with independent and dependent sources, Series and parallel circuits, Star delta conversion, Superposition theorem, Thevenin’s theorem, Norton’s theorem, Maximum Power Transfer Theorem.

2. **A.C Circuits** : Common signals and their waveform, R.M.S and Average value, form factor and Peak factor of sinusoidal wave. Impedance of series and parallel circuits, Phasor diagram, Power, Power factor, Power triangle, Coupled circuits. Resonance and Q-factor, Superposition, Thevenin’s and Norton’s, Maximum power transfer theorem for A.C circuits

5. **Basic indicating instruments** for measurements Current Voltage, Power, Energy Insulation resistance.

Text Book:

Reference Books:Tata Fitzgerald

03 1x02 ELECTRICAL POWER GENERATION AND ECONOMICS
L-T-P : 3-1-0 Credit : 4
1. **Introduction** : Overview of power generation scenario from thermal, hydro, nuclear and non conventional sources.

2. **Thermal station** : Selection of site, layout, main components (boiler, economizer, air preheater, super heater).

3. **Coal handling plants**, water treatment plant, ash handling plant.

4. **Types of boilers** and their characteristic, steam turbines and their characteristics, governing system for thermal power station.

5. **Hydro electric station** : Selection of site, layout, classification of hydro plants, general arrangement and operation of a hydro plant. Governing system for hydro plants, types of turbines.

6. **Nuclear power station** : Nuclear reaction for nuclear power. Nuclear fuels, feasibility of a nuclear power station layout. Main part of a nuclear station, nuclear reactor classification, control system for nuclear power station.

10. **Power operation economy** : Load factor, diversity factor, plant capacity factor, different types of tariff and their calculation.

Text Book :
1. Electrical power generation & distribution by S.N. Singh, PHI

Reference Book :
03 1x03 ELECTRICAL MACHINES-II

L-T-P : 3-0-3 Credit : 5

1. **Synchronous Generator** : Principle, construction and types of synchronous machines, Methods of excitation, Armature windings, EMF equation of Alternator, Armature reaction, testing(OC and SC test) Voltage regulation, Phasor diagram.

 Lecture : 9

2. **Two reaction** : Theory Modified Phasor diagram, Power angle characteristics, Parallel operation. Effect of change of fuel supply and excitation on alternator connected to infinite bus , Cooling of synchronous Generator.

 Lecture : 9

 Lecture : 8

 Lecture : 8

5. **Special motors** : Single phase synchronous motors, Two phase AC Servo Motor, single phase series (universal) motor, stepper motor, Permanent magnet DC motor, etc, Applications.

 Lecture : 8

Text Books :
1. Electrical machines by Nagrath I.J. and Kothari D.P. TMH
2. Electrical machinery by Fitzgerald A.E. & Kingsley: TMH

Reference Books:
1. Electrical Machines by P.S. Bimbra , Khanna Publication.
2. Electrical machines by Samarjit Ghosh, Pearson Education Pvt. Ltd.

03 1x04 POWER SYSTEM - I

L-T-P:3-1-0 Credit : 4

1. **Distribution** : Effect of system voltage on transmission efficiency, Single phase AC, 3 phase AC System, Choice of Conductor’s Size, Choice of voltage, Radial and ring Feeders: Calculation of voltage drop in AC, Radial and ring system.

 Lecture : 6

2. **Electrical Design** : Calculation of inductance of conductor due to internal and external flux, Inductance of Single Phase System; Kin and proximity effects/ GMR of solid conductor, GMR of standard conductor, Mutual GMD Inductance of opposite conductor lines, Inductance of 3-phase lines single circuit and double circuit, symmetrical spacing and unsymmetrical spacing, Inductance of bundled conductor system, Calculation of capacitance of single phase and 3-phase system, symmetrical and unsymmetrical spacing, single circuit and double circuit bundled conductor system, effect of earth on capacitance of line.

 Lecture : 12

3. **Mechanical Design** : Types of supports cross arms and conductors, Calculation of sag and tension, cases of unequal height of supports, Stringing chart, earth clearance of live conductors, vibration, dampers.

 Lecture : 6

4. **Performance of Lines** : Short, medium and long lines, A.B.C.D, constants: regulations nominal and T equivalent pie and T representation, surge impedance, surge impedance loading of line, universal power circle diagram, Lossless line.

 Lecture : 10

 Lecture : 10

Textbooks:
1. Elements of Power System Analysis by Stevenson (McGraw Hill)
2. Modern Power System by N J Nagrath & Kothari (TMH)
3. Elective Power System by Soni, Bhatnagar & Gupta
Reference Books:
1. A Course in Electrical Power by Soni, Bhatnagar & Gupta

03 1x05 NETWORK THEORY
L-T-P:3-0-3
Credit : 5
1. **Transient response** of RC, RL, RLC circuits to various excitation signals such as step, ramp, impulse and sinusoidal excitations using Laplace transform.
2. **Terminal pairs or ports**, Network functions for one-port and two-port networks, poles and zeros of network functions, Restrictions on pole and zero locations for driving point functions and transfer functions, Time domain behavior from the pole-zero plot.
5. **Filter fundamentals**, high-pass, low-pass, band-pass, and band-reject filters.

Text Books:
1. Networks and Systems by D Roy Choudhury; New Age International
2. Network Analysis by Van Valkenburg; PHI
3. Introduction to Modern Network Synthesis by Van Valkenburg; John Wiley

Reference Books:
1. Basic circuit theory by Dasoer Kuh; (McGraw Hill)
2. A Course in Electrical Circuit Analysis by Soni & Gupta; Dhanpat Rai Publication.
3. Circuit Analysis by G K Mittal, Khanna Publication.

03 1x06 ELECTROMAGNETIC FIELD THEORY
L-T-P : 3-1-0
Credits : 4
1. **Introduction** of field co-ordinate systems
2. **Electrostatics**: Coulomb’s law, Gauss’s law and its applications, the potential functions, Equipotential surface, Poisson’s and Laplace’s equation, Applications (solution for some simple cases), Capacitance, Electrostatics energy, Conductor properties and boundary conditions between dielectric and dielectric-conductor, Uniqueness Theorems.
3. **Magneto statics**: Biot-savart law, Ampere’s circuital law, Curl, Stroke's theorem, Magnetic flux and magnetic flux density, Energy stored In magnetic field, Ampere force law, Magnetic vector potential, Analogy between electric and magnetic field.
4. **Maxwell’s equations**: Equation of Continuity for time varying field . Inconsistency of ampere circuital law, Maxwell’s equations in differential and integral form.
5. **Electromagnetic wave**: Solution of wave equation in free space, Uniform plane wave propagation, Uniform plane waves, the wave equation for conducting medium, Wave propagation in lossless medium and inductive medium, Conductors and dielectrics, Polarization.
6. **Reflections and refractions**: reflection by a perfect conductor with normal as well as oblique incidence. Reflection and refraction by perfect dielectrics with normal and oblique incidence. Surface impedance.
7. **Pointing vector**: Pointing theorem, instantaneous average and complex pointing vector, power loss in a plane conductor.
8. **Transmission Lines**: Transmission lion theory, low loss radio-frequency and UHF transmission line. UHF line as a transformer, voltage step up of the quarter wave transformer. Transmission line chart (Smith Chart).

Text Books :
1. Electromagnetic waves and radiating system by E.C.Jordan, K.G.Balmain, Pearson
2. Engineering Electromagnetics by W.H.Hyat, TMH.

03 1x07 ELECTRICAL INSTRUMENTS AND MEASUREMENTS
1. **Measurements** of Voltage, Current, Power and Power factor, Energy and frequency.
 Lecture: 10

2. **Range Extension** including current and potential transformer
 Lecture: 4

3. **Galvanometer**: Dynamics of D' Arsonval galvanometer, Vibration galvanometer, Ballistic galvanometer.
 Lecture: 6

4. **Bridges**: D.C bridge, Wheatstone bridge, sensitive and its application bridge. Type of bridge for measure
 Lecture: 7

5. **Standard** A.C and D.C potentiometer, Principle and standardization and application.
 Lecture: 5

 Lecture: 5

7. **Digital measurements**.
 Lecture: 5

Text Books:
1. Electrical measurement and Measuring Instruments by E.W. Golding
2. Basic Electrical measurement by M.B. Stout. PH

Reference Book:
1. Measurement Systems: Application & Design by Doebelin (5th Ed) TMH

03 1x08 POWER SYSTEM – II

L-T-P: 3-1-0
Credit: 4

1. **Power station and sub-station**: Hydro and power station: Site selection, Layout, calculation of available power classification, Salient features, Pumped hydro plants.
 Thermal power Station: Site selection, Layout, calculation of coal requirements, cooling water tower efficiency, co-ordination of hydro and thermal power stations.
 Lecture: 10

2. **Economy of power system**: Load curves, Load duration curves, Diversity Factor, Base and peak Load station, Cost allocation of power station- fixed cost, Two par Tariff and Evaluation.
 Lecture: 10

3. **Symmetrical three phase faults on synchronous machines**: Short circuit current and reactance of synchronous machines, Internal voltage of loaded machines under transient conditions.
 Lecture: 4

4. **Symmetrical components**: Synthesis of unsymmetrical phases from their symmetrical components operators, The symmetrical components of unsymmetrical phase, phase shift in transformer bank: power in terms of symmetrical components; unsymmetrical series impedances; sequence impedances and sequence networks; sequence networks of unbalanced generators; sequence impedance of circuit elements positive and negative sequence networks; zero sequence network.
 Lecture: 6

5. **Unsymmetrical Faults**: Signal line to ground fault, line to line fault, double line to ground fault on unloaded generator and power systems, Interpretation of inter guidance sequence networks.
 Lecture: 6

6. **Power System Stability**: Steady state power limit of cylindrical rotor and salient pole machines without saturation, Maximum power transmitted to a transmitting network, series capacitor, Transient stability power angle curve, Inertia clearance angle, equal swing equation, equal area criterion and its application.
 Lecture: 6

Text Books:

Reference Books:
1. Electrical Power System by C.L. Adhwa, Wiley Eastern

03 1x09 POWER ELECTRONICS

L-T-P: 3-0-3
Credit: 5
1. **Introduction to thyristor and control circuits**: terminal characteristic, rating and protection.
 Lecture: 4

2. **Thyristor firing circuit**: Triggering circuit suitable for 1 phase and 3 phase fully controlled converters.
 Lecture: 4

3. **Converters**: Uncontrolled three phase power rectifiers, 1 phase & 3 phase line commutated A.C to D.C converters.
 Lecturer: 10

4. **Inverters**: Basic Bridge inverter circuit 1 phase & 3 phase phase McMurray-Bedford method of communication, pulse width modulation inverters. Series inverter gating circuits.
 Lecture: 8

5. **Choppers**: Types of choppers, steady state analysis of type A chopper, communication methods, chopper control of D.C. Motor.
 Lecture: 8

6. **Other applications**: A.C., voltage regulator, cyclo-converter.
 Lecture: 4

7. **Application** of thyristors for industrial drives.
 Lecture: 2

Text Books:

1. Power Electronics by Rashid, PHI
2. Power Electronics by Ned Mohan, John Wiley & Sons

Reference Books:

1. Thyristorised Power Controllers by G.K dubey, Wiley Eastern Ltd.
2. Power Semiconductor Circuits by Dewan & Strangten, John Wiley & Sons

03 1x10 SIGNALS & SYSTEM

L-T-P : 3-1-0
Credit : 4

1. **System and Signal**: Definition, classification of systems, standard test signal, properties of system, properties of liner system.
 Lecture: 3

2. **Analogous System**: Force voltage analogy, Force current analogy, Mechanical coupling devices, Electromechanical system.
 Lecture: 5

3. **Laplace transformation**: Laplace transform of some important function, shift theorem and its application, Laplace transform of periodic functional, analysis of response, initial & final values theorem, response to periodic sinusoidal excitation.
 Lecture: 10

 Lecture: 15

5. **Z transformation**: Z transform, Discrete time, LTI system, solution of difference equation, Application of Z transform to open loop system.
 Lecture: 9

Text Books:

1. Analysis of Linear System by D.K Cheng, Narosa pub. House

Reference Books:

1. Signal & system by H.P Hus, Tata McGraw Hill
2. Signal & system by I.J. et. at., Tata McGraw Hill

03 1x11 MICRO PROCESSOR AND ITS APPLICATION

L-T-P : 3-0-3
Credit : 5

Intel 8085

1. **Introduction**: CPU, Register, memory, Buses, Memory addressing capacity of a CPU.
 Lecture: 3

2. **CPU Architecture**: Pin configuration, Instructions, Addressing modes, Instruction word size, Languages.
 Lecture: 4
3. **Timing Diagram**: Read cycle, write cycle, fetch cycle, Memory read, Memory write, I/O cycle.
 Lecture: 3

4. **Programming**: Simple programming: 8-bit addition & subtraction, 16-bit addition, Delay subroutine using register, finding lowest & highest no. in data array.
 Lecture: 4

5. **Data transfer** schemes, I/O port.
 Lecture: 5

6. **8255, 8251, 8253, 8257** chips, pin diagram, control word, operating modes.
 Lecture: 6

7. **Interfacing** to ADC, Analog multiplexer, simple & hold.
 Lecture: 4

Intel 8086

8. **Architecture**: BIU & Execution unit, pin diagram, function of different modes, Registers.
 Lecture: 4

9. **Addressing Modes**, Instruction
 Lecture: 4

10. **Programming**.
 Lecture: 3

Text Books:
1. Fundamental of Microprocessor & Microcomputer by B.Ram, Dhanpat Rai
2. Advance Microprocessor by B.Ram

Reference Books:
1. Microprocessor & Interfacing by D.V hall, TMH
2. Microprocessor Architecture by R.S Gaonkar
3. Microprocessor with Application in process control by S.I Ahson, TMH
4. Programming Microprocessor Interfaces by Michael Andrews, PHI
5. The Intel Microprocessor Architecture, Programming & Interfacing by B.Brey, PHI

03 1x12 LINEAR CONTROL THEORY

L-T-P: 3-0-3

1. **Introduction**: The control system, servomechanism, servomotors, standard test signal.
 Lecture: 3

2. **Time response analysis**: Time response of second order system, design consideration for higher order system, stability relative stability.
 Lecture: 4

3. **The root locus technique**: Concept, construction of root loci root contours systems with transformation log.
 Lecture: 6

4. **Frequency response analysis**: Correlation between time and frequency response, bode plots, root locus and minimum phase system log magnetic vs phase plots, stability in frequency domain, polar plots.
 Lecture: 8

 Lecture: 5

6. **Closed loop frequency response**.
 Lecture: 3

7. **Compensation of control system**: Introduction, type compensation approach to compensation.
 Lecture: 8

Text Books:
1. Modern control system by Nagrath & Gopal

Reference Books:
1. Modern Control Engineering by K.Ogata, Pearson Education.
2. Control Engineering by Kuo.

03 1x13 PROTECTION OF POWER APPARATUS & SYSTEM

L-T-P: 3-0-3

Credit: 5
1. Name and cause of faults.

2. Schemes of protection: Methods of fault discrimination.

3. Protective relays: Construction and operating principle of over current relays, directional relays, Distance relays, Differential relays.

4. Protection of feeders: Over current protection and distance protection.

5. Protection of transformer and generator.

7. Circuit breaker, construction and operating principle of air blast, oil, SF6 and vacuum circuit breaker.

8. Protection against over voltage: Cause of over voltage, lightning phenomenon, lightning arrestors, surge absorber, insulation co-ordination.

Text Books:
1. Power System Protection & switch Gear by B. Ram & D. N Vishwakarma, TMH
2. Power System Protection and switch gear by R & C

Reference Books:
1. Art & science Protection Relaying by Moson
2. Switch gear and Protection by Sunil S. Rao, Khanna Publication

03 1x14 POWER SYSTEM DESIGN
L-T-P: 1-0-3 Credit: 3
1. Per unit system representation, reactance diagram, impedance diagram.

4. Symmetrical component: Transformation, phase shift in star-delta transformer, sequence Impedance and sequence network of transmission line, Synchronous machine, Transformer and power system.

5. Unsymmetrical Short Circuits: Symmetrical component analysis of unsymmetrical short Circuits, single line to ground fault, Double line to ground fault and line to line fault.

Text Books:
1. Power system analysis by Stevenson and Grainger.

Reference Book
1. Nagrath- Kothari, Modern power system Analysis
2. C.L Wadhwaa, Electrical power systems
3. B.R Gupta, power systems Analysis

03 1x15 MODERN CONTROL THEORY
L-T-P: 1-0-3 Credit: 5
1. Development of state space model, state and state equation, transfer function from state equation and state equation from transfer function.

2. State transient matrix, solution of state equation transfer matrix.

3. Concept of controllability and absorbability.
4. **State variable** feedback, state observes.
 Lecture : 3
5. **Control system** design via pole placement.
 Lecture : 3
6. **Optimal control system** : Introduction, performance in device, transfer function approach, state variable approach, parameter optimization.
 Lecture : 3
7. **Non-linear system** : common non-linear stability system, method for studying non-linear system, linearization, describing function analysis.
 Lecture : 6
 Lecture : 8

Text Book :
1. Modern Control by Ogata, Pearson Education

Reference Book :
1. Control Engineering: Theory & Practice by Bandopadhya, PHI

03 1x16 UTILISATION OF ELECTRIC POWER

L-T-P : 3-1-0
Credit : 4

 Lecture : 10
 Lecture : 6
3. **Cooling** : Method of cooling by air, hydrogen and water, forced and natural cooling.
 Lecture : 4
 Lecture : 5
 Lecture : 9
 Lecture : 8

Text Books :
1. Utilization of Electric Power by C.L.Wadhwa
2. Utilization of Electrical Energy by E.Openshaw Taylor

Reference Books :
1. Utilization of Electrical Energy by H.Partap, Dhanpat Rai & Sons
2. Utilization of Electrical Energy by R.K Garg
3. Electric Traction by Dover

03 1x17 MICROPROCESSOR AND MICROCONTROLLERS

L-T-P : 3-0-3
Credit : 5

1. **The 8086 Architecture** : Pin diagram of 8086 and description of various signal. Architecture block diagram of 8086 & description of sub-block such as EU & BIU & of various register, Description of address computation & memory segmentation, program relocation, addressing modes, Instruction formats.
 Lecture : 8
2. **Installation set of 8086** : Installation execution timing, Assembler installation format, data transfer installations. Arithmetic installations, Branch installations, looping installations, NOP & HLT installations, Flag manipulation installations, Logical installations, Shift & Rotate installations, Directives & operators, Simple example such as copying a block of data, finding maximum from an array of numbers, using look up table technique etc.
 Lecture : 10
3. **Micro-controllers**: Type, Processor architecture memory type, hardware features, 8051 processor architecture. _Lecture: 3_

4. **Addressing mode**, 8051 installation set-data movement, Installation, architecture installation, Logic installation, Branch group installation. _Lecture: 3_

5. **8051 software** and programming memory interfacing memory interfacing and address decoding, programming input/output timer, ADC/DAC, serial data communication controller and interrupts controller for different application with respect to installation & control. _Lecture: 10_

Text Books:

1. The Intel Microprocessor 8086-Pentium processor by Brey (PHI)
2. Advance Microprocessor and Interfacing by Badri Ram, TMH
3. The 8088 and 8086 Microprocessor-Programming, Interfacing, Hardware & Applications by Triekel & Singh, PHI
4. Microprocessor and interfacing by D.B.Hall, McGraw Hill

Reference Books:

4. 80xx Microprocessor Programming by Venugopal, BPB Publication.
5. Microprocessor Architecture, Programming & Applications with 8056/8086 A by Ramesh S. Gaonkar, Wiley Easter Ltd.
7. Programming and Customizing the 8051 Microcontroller by Predko; TMH.
9. Designing Embedded Hardware by John Catsoulis; SHROFF Pub. & Dist. ND.
10. Design with Micro controllers by John B.Peatman. MH

03 1x18 MODERN CONTROL THEORY

L-T-P : 3-1-0
Credit : 4

1. **Development of state model**: State and equation, transfer function from state equation and state equation from transfer function. _Lecture: 5_
2. **State transient matrix**, solution of equation transfer matrix. _Lecture: 5_
3. **Concepts of controllability** and absorbability. _Lecture: 3_
4. **State variable feedback**, State observers. _Lecture: 3_
5. **Control System** Design via Pole placement. _Lecture: 3_
6. **Optimal control system**: Introduction, Performance in devices, transfer function approach, state variable approach, parameter optimization. _Lecture: 6_
7. **Non liner System**: Common non-liner stability of non-liner system, method for studying non-liner system, linearization, describing function analysis. _Lecture: 8_

Text Books:

1. Modern Control by K.Ogata, Pearson education.

Reference Books:

1. Control Engineering Theory & Practice by Bandopadhya. PHI
03 1x19 DIGITAL CONTROL SYSTEMS
L-T-P : 3-1-0 Credit : 4
1. **Sampling and reconstruction**: Sampled data control system, Digital to analog conversion, analog to digital conversion, sample and hold operation. **Lecture : 8**
2. **Transform analysis of sampled data system**: Linear differential equation, solution of linear difference equations, pulse response, z transform, pulse transform function, block diagram analysis of sampled data system, stability analysis. **Lecture : 12**
3. **Application of z transform**: To open loop system, application of z transform to closed loop system stability of sampled data feedback system. **Lecture : 10**
4. **State space analysis of sampled data system**: Discrete time state equation, simplicity transformation, The Cavlex Hamilton theorem, realization of pulse transfer function, state equation for sampled data system. **Lecture : 12**

Text Books:
1. Digital control and State Variable method by M. Gopal, TMH

03 1x20 SIMULATION LAB
L-T-P : 1-0-3 Credit : 3
Simulation of Electrical and Electronic circuits and systems; study of their performance under different input and parametric changes, time and frequency response using OrCAD and MatLAB – Simulink Software

03 1x21 COMPUTER AIDED POWER SYSTEMS ANALYSIS
L-T-P : 3-0-3 Credit : 5
1. **Algorithm** for formulation of bus, types of modifications, short-circuit studies: Single line to ground fault, Line to line fault, double line to ground fault and symmetrical fault, conditions of pre-fault current.
2. **Algorithm and flow-chart** for computer application to load flow studies using G-S method, Newton-Raphson method and fast decoupled flow methods.
3. **Algorithm and flow-chart** for computer application to economic load dispatch; neglecting losses, optimum generation schedule of hydro-thermal system.
4. **Aims and function of control centers**, set up, locations, central facilities, civil facilities, facilities in control room, communication, telemetry, emergency control.
5. **Power System Management**: Load dispatch center, reporting and data management, load dispatcher in the consumer setup, load control center, computerized power system control, SCADA system and RTU.

Text Books:
1. Power system Analysis Operation & Control by Abhijit Chakrabarti & Sunita Halder, PHI
2. Power system Analysis by Hadi Saadat, TMH
3. Digital Power system Protection by R.P Singh. PHI

Reference Books:
1. Computer methods in power by G.W Stagg and A.H El-Abiad. MGH

03 1x22 ADVANCED ELECTRICAL MACHINE
L-T-P : 3-1-0 Credit : 4
2. **Repulsion motor-starting** performance and application, double cage induction motor: conditional feature, principle of operation, Equivalent circuits, torque speed characteristic and application. **Lecture : 8**
 Lecture : 7

4. **Dynamics of Electrical machines**, general torque equation, inertia constant, analysis of synchronous machine under transient condition, stability affect of damping.
 Lecture : 5

5. **State variable model of electrical machines**: Unbalanced operation of two and three-phase induction motors.
 Lecture : 5

 Lecture : 5

03 1x23 COMPUTER AIDED NETWORK ANALYSIS
L-T-P : 3-1-0
Credit : 4

1. **Local Area Network**: Background, Topologies and Transmission Media, LAN standards IEEE 802 reference Model, Logical Link Control, Medium Access Control, IEEE 802.3 Medium Access Control, Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring and FDDI, Medium Access Control, IEEE 802.5 Transmission Medium Options, Fibre Channel Elements, Fibre Channel Protocol Architecture, Fibre Channel Physical Media and Topologies.

2. **Connecting devices and Backbone Networks**: Bridges, Functions of a Bridge, Bridge Protocol Architecture, Fixed routing, Spanning tree approach, Connecting devices like Repeaters, Hubs, Bridges, Two-layer switches, Routers and Three layer switches, Backbone Networks, Bus Backbone, Star backbone, Connecting remote LANs, wireless LANs, Applications, Architecture, IEEE 802.11, Architecture and Services, Medium Access Control, Physical layer.

(2) “Data Communication and Networking”, 3/e. by Behrouz A. Forouzan.

03 1x24 EHV POWER TRANSMISSION
L-T-P : 3-1-0
Credit : 4

1. **Maxwell’s coefficients**, Sequence inductance, and capacitance, Charge Matrix, Effect of Ground wire.
 Lecture : 6

2. **Surface Voltage-gradient** on bundled conductors Mangoldt’s formula, Gradient factors & their use, Ground level electrostatic field of EHV lines.
 Lecture : 6

3. **Power frequency** over-voltage control, Series and shunt compensation, Generalized Constants of Compensated line, Static Var Compensators (SVC/SVS).
 Lecture : 7

4. **Switching** over-voltage in EHV Systems
 Lecture : 6
5. **Six-pulse Bridge circuit**: Waveforms and relevant equations, Twelve-pulse converter, Advantages of higher pulse number, Bipolar to monopolar operation, Converter performance with phase control, Commutation and effects of reactance.
 Lecture: 8

6. **Introduction to HVDC system**: Economical advantages, Technical advantages, Critical distance, Submarine transmission.
 Lecture: 5

7. **Inverter**: Equivalent circuit of HVDC system, Schematics diagram, Reactive power consideration in HVDC system, Harmonics, Filters in HVDC System.
 Lecture: 7

Text Books:
1. Extra high Voltage AC Transmission Engineering (2nd Ed) by R.D. Begamudre, Wiley Eastern Ltd.

Reference Books:

03 1x25 CONTROL SYSTEM DESIGN

L-T-P: 3-1-0
Credit: 4

1. **Introduction**: Design specifications Controller configuration, Fundamental Principals of design with PD controller time-domain interpretation of PI control, design with PI controller- Time-Domain interpretation of PI control, Frequency domain interpretation of PI controller, Summary of effects of PI control.
 Lecture: 8

 Lecture: 8

3. **Design with lag-lead controller**, Pole zero cancellation design, north filter, forward and feed forward controllers, Design of Robust control systems.
 Lecture: 6

4. **Hardware and software implementation of common compensator**: Physical realization of common compensator with active and passive elements, Tunable PID algorithms- Position and velocity algorithms, Ziegler-Nichols method for controller tuning.
 Lecture: 6

5. **State feedback control**, Pole placement design through state feedback, with integral control, Design of state observer.
 Lecture: 8

6. **Design of discrete data control system**: Introduction, Digital implementation of analog controller (PID) and lead-lag controllers, Digital controllers, design of discrete data control system in frequency domain and Z-plane.
 Lecture: 4

7. **Synthesis** through Pole zero configuration, Determinate of closed loop system functions from the specifications, Determination of open loop transfer function from the closed loop transfer function from the closed loop transfer function, Additional correlation between open loop and closed loop characteristics.
 Lecture: 3

Text Book:

Reference Books:

03 1x26 COMPUTER BASED PROCESS CONTROL

L-T-P: 3-1-0
Credit: 4

2. **INTRODUCTION TO PULSE TRANSFER FUNCTION**: Open loop and closed loop response of SDS design and Implementation of different digital control algorithm: dead beat, Dahlin, Smith predictor and internal model control algorithm with examples.

Text Books:

1. System Identification Theory For the user by Lennart Ljung- PHI, Information and System Sciences series, NJ.
2. Computer controlled system by P. Deshpande and Ash, ISA press, USA.
3. Digital control and estimation by Richard H. Middleton and Graham C. Goodwin – A Unified approach, PHI.

03 1x27 **COMPUTER AIDED MACHINE DESIGN**

L-T-P: 3-1-0 **Credit**: 4

1. **INTRODUCTION**: Basic design principles and approaches, specification, Magnetic and electric loading, output equations and output coefficients, Main dimensions, Ratings, Heating cooling and temperature rise.
2. **TRANSFORMER**: Magnetic circuit, core construction and design, Winding types, Insulation, Loss allocation and estimation, Reactance, Temperature rise.
3. **D.C. MACHINE**: No. of poles and main dimensions, armature, Windings, Magnetic circuit and Magnetization curve, Commutator and brushes.
4. **INDUCTION MACHINE 3-PHASE**: Rating specification, standard frame size, Main dimensions specific loadings, Design of stator windings, Rotor design – Slots and Windings, Calculation of equivalent circuit parameter.
5. **SYNCHRONOUS MACHINE**: Main dimensions, Magnetization characteristic, field welding design, Computer assisted design of above machines.

Text & Reference Books:

03 1x28 **DIRECT ENERGY CONVERSION**

L-T-P: 3-1-0 **Credit**: 4

1. **Introduction**: Energy sources, Energy conversion chart, Direct Energy Conversion (DEC) devices, General representation of DEC devices
2. **Thermoelectric Power Generation**: Introduction, Thermoelectric effects, Thermodynamic analysis of Thermoelectric generator, Maximum thermal efficiency and maximum power output, Single stage and multistage generators, Thermoelectric materials, Applications.
4. **Solar Cells**: Introduction, Basic theory of p-n junction photovoltaic converters, Characteristics of solar radiation, Typical schematic representation of a solar cell and the idealized equivalent circuit, Basic characteristics, power and efficiency, Materials for photovoltaic conversion and cell fabrication, Silicon, Cadmium Sulphide and Gallium Arsenide cells, Application, System design methodology.
5. **MHD Generator**: Introduction, Gaseous conductors, Seeding, MHD equations, Operating range of an MHD duct, Different types of MHD generators, Thermodynamic analysis of linear constant velocity MHD generator, Electrical power output and efficiency, Adiabatic efficiency, Introduction to liquid MHD generator.
 Lecture: 10

6. **Fusion Power**: Principles of fusion power production, Advantages of fusion power, Problems in achieving controlled thermonuclear reactions, Plasma confinement, heating and diagnostics, Fusion devices.
 Lecture: 5

7. **Wind Power**: Introduction to Wind Power Generation.
 Lecture: 5

Text Books:

03 1x29 MODERN POWER SYSTEM OPERATION AND CONTROL
L-T-P : 3-1-0
Credit : 4

1. **Introduction**: Operating states, Preventive and emergency control, Megawatt-frequency and megavar-voltage interaction.
 Lecture: 3

 Lecture: 8

3. **Multi Control Area System**: Introduction, Pool operation, Two area systems, Modelling of tie line, Static and dynamic response of two area system, Tie-line bias control, Tie-line control, digital electrohydraulic (DEH) control system, Implementation of DEH system.
 Lecture: 10

4. **Excitation System**: Introduction, Elements of an excitation system, Types of excitation system, Digital excitation system.
 Lecture: 5

5. **Reactive Power Control**: Introduction, Methods of voltage control, Power capacitors and its application to distribution and transmission system, Static var system.
 Lecture: 6

 Lecture: 4

 Lecture: 6

Text Books:

1. Electric Energy Systems Theory an Introduction by Olle I. Elgerd
2. Power Generation Operation and Control by A.J. Wood, B.F. Wollenberg
3. Power System Deregulation by Loi Lei Lal

Reference Books:

1. Power System Stability and Control by P. Kundur
2. Electric Power Distribution System Engineering by T.Goneen

03 1x30 POWER SYSTEM DYNAMICS AND RELIABILITY
L-T-P : 3-1-0
Credit : 4

 Lecture: 5

2. **Synchronous Machine Modeling**: Synchronous Machine, Basic Equations, Generator operated as part of large power grid.
 Lecture: 5

 Lecture: 5
 Lecture: 7

5. **The Basics of Power System Reliability**: Characteristics of component failure, the general reliability functions, the exponential distribution, mean time to failure, mean time to failure.
 Lecture: 7

6. **Generation Reliability Model**: Two state Markov Model, Steady-state availability, Steady-state unavailability or forced outage rate (FOR), Capacity outage probability table (COPT), Recursive techniques, Loss of load probability (LOLP) and loss of energy expectation (LOLE) calculation.
 Lecture: 10

7. **Transmission system reliability evaluation and composite reliability evaluation**: Average interruption rate method, The frequency and duration method, Stormy and normal weather effect, The Markov process approach, Two plant single load composite system reliability analysis.
 Lecture: 5

Text Books:
- (1) Power System Control & Stability by P. Kundur
- (2) Power System Reliability Evaluation by Roy Billingtor.

Reference Books:
- (1) Electric Energy System Theory by O.I. Elgerd
- (2) Power System Analysis by Stevenson and Grainger
- (3) Power System Planning by R. L. Sullivan
- (4) Reliability Modelling in Electric Power Systems by J.Endrenyl

03 1x31 FUZZY LOGIC CONTROL
L-T-P : 3-0-3
Credit : 5

1. **Fuzzy control** from an industrial perspective, knowledge-based controllers, knowledge representation in KBC's, vagueness, fuzzy logic versus probability theory, fuzzy sets, their properties & operations on fuzzy sets, fuzzy relations & operations on fuzzy relation, the extension principle, fuzzy propositions, tile compositional rule of inference, different implications, representing a set of rules.

3. **The control problem**, The FKBC as a non-liner transfer element and type of FKBC such as pill-link FKBC, shding mode FKBC, sugeno FKBC.

4. **Approaches to design** such as membership function tuning using gradient decent, membership function tuning using performance criteria, the self-organizing controller, model-based controller.

5. **The state space approach**, stability and robustness Li'Idices, input-output stability, circle criterion, the conicity criterion.

Text Book: An Introduction to Fuzzy Control by D.Driankov, H. Hellendoorn & M. Reinfrank. Narosa
Reference Book: Fuzzy Control System by Abraham Kandel & Gideon Imngholz : Narosa

03 1x32 NEURAL NETWORKS SYSTEM
L-T-P : 3-1-0
Credit : 4

 Lecture: 6

2. **Supervised Learning I**: Pattern space and Weight space, Linearly & non-Linearly separable classes, Decision Boundary, Hebbian learning & limitation, Perceptron, Perceptron convergence theorem, Logic Functions implementations.
 Lecture: 6

 Lecture: 7
4. **Supervised Learning II**: Multilayer Perceptrons, Backpropagation algorithm, XOR Problem, Training modes, Optimum learning, Local minima, Network Pruning techniques.
 Lecture: 7

5. **Unsupervised Learning**: Clustering, Hamming Networks, Maxnet, Simple competitive learning, Winner-Take-All Networks, Learning Vector Quantizers, Counterpropagation Networks, Self Organising Maps (Kohonen Networks), Adaptive Resonance Theory.
 Lecture: 6

6. **Associate Models**: Hopfield Networks (Discrete and continuous), Storage capacity, Energy Function & minimization, Brain-State-in-a-Box Neural Network.
 Lecture: 6

7. **Applications of ANN & Matlab Simulation**: Character Recognition, Control Applications, Data compression, Self organizing semantic Maps.
 Lecture: 7

Text Books:

1. Neural Networks : A Comprehensive Foundation by Simon Haykin. (Pearson Education)
2. Elements of Artificial Neural Networks by Kishan Mehrotra, Chilukuri K. Mohan, Sanjay Ranka. (Penram International Publishing, India)

Reference Book:

1. Neural Networks : A Classroom Approach by Satish Kumar, Tata McGraw Hill

03 1x33 SWITCH GEAR AND PROTECTION

L-T-P : 3-1-0
Credit : 4

1. **Circuit breakers**: arc voltage mechanism of arc interruption restriking voltage and recovery voltage, classification of CBs oil CBs Air CBs Vacuum, Sf6 CBs HVDC CBs, Rating and Resting of CBs.
2. **Protective Relaying**: Introduction to protective relaying, thermal relay, over current relay, Directional relay, Differential really.
3. **Transmission Line and Feeder Protection**: Over Current and directional relay applications distance Protection using impedance relay, reactance relay, MHO relay.
4. **Generator Protection**: Protection against stator and rotor faults and abnormal operating conditions such as unbalanced loading, loss excitation, over speeding.
5. **Transformer Protection**: Types of faults, over current protection, differential protection, Differential relay with harmonic restraint, Protection against high resistance ground faults, interturn faults, Bucholz relay.
6. **Introduction Motor Protection**: Production against phase fault, ground fault and abnormal operating conditions such as single phasing, Phase reversal and overloading.
7. Introduction to carrier-aided protection and numerical protection

Text Books:

1. Power System Protection & Switch Gear by Badriram and Vishwakarma, TMH Publication.
2. Switch Gear and Protection by Sunil S. Rao, Khanna Publications

Reference Books:

1. Power System Protection & Switch Gear by Ravindranath & Chander, New Age Publications
2. The Art and Science of Protective Relaying by C. Russel Mason, Wiley Western Ltd.

03 1x34 ELECTRICAL MACHINE MODELING AND ANALYSIS

L-T-P : 3-1-0
Credit : 4

1. **Modelling and Analysis**: Unified machine theory, generalized torque equation, performance and speed control of d.c. machine, induction machine and synchronous machine using generalized theory, Transformation methods (stationary, rotor and synchronous frames) and corresponding equivalent circuits, Park's transformations, drives and control techniques, concept of space vector.
 Lecture: 10

2. **CAD of electrical apparatus**: Review of design process of transformers, rotating machines, electromagnets etc., Basic design methodology and engineering consideration, flow charts for design and design optimization of transformers, rotating machines, electromagnets etc., Finite element method of design, FE techniques and their applications for designing transformers, rotating machines, electromagnets etc, CAD programming using “C” language and MATLAB.
 Lecture: 12
3. **Control of Electric Drives**: DC Motor Drive, Induction Motor Drive, direct and indirect field oriented control of induction motor, direct torque control, closed loop drive using sensor and sensorless operation, Switched Reluctance Motor Drive, Sensor and sensorless control of SRM, Vector control of the PMSM drive, Direct torque control of PMSM drive, Sensor and sensorless control of PMBLDC and PMSM drives.

Lecture: 14

03 1x35
MICROCONTROLLERS AND ITS APPLICATION

L-T-P : 3-0-3
Credit : 5

1. **Microcomputers**: Type, Processor architecture memory type, hardwares, 8051 processor architecture.
2. **Addressing modes**: 8051, installation set - data movement installation, arithmetic installation, Logic instruction, Branch group instruction.
3. **8051 software and programming**: memory interfacing and address decoding, programming Input/Output port/timer ADC/DAC, serial data communication controller and interrupts controller for difference application with respect to instrumentation & control.
4. **Embedded System**: Hardware, Embedded system software, introduction to embedded development tools like cross assembler, simulator, HLL cross compiler & in circuit emulator for system development.
5. **Introduction** to advanced embedded controllers with built in multichannel ADC,PWM, watch dog timer, multi tasking and trends, Real time operating system, basic design using real time operating system.

Reference Books:
1. The 8051 Micro controller & embedded system by M.A.Mazidi & J.G. Mazidi. Pearson Education
3. Programming & customizing 8051 micro controller by Myke Predko. TMH
4. Design with Micro controllers by John B. Pittman. MH

03 1x36
HIGH VOLTAGE ENGINEERING

L-T-P : 3-1-0
Credit : 4

1. **Generation of high voltages and current, AC voltage**: cascade transformers-series response circuits DC voltages, voltage doubler cascade circuit electrostatic machines, impulse voltage: single stage and multistage circuits wave shaping tripping and control of impulse generators generation of switching surge voltage and impulse currents.
3. **High voltage testing of materials and apparatus**: Preventative and diagnostic tests-dielectric loss measurement-Schering bridge-inductively coupled ratio arm bridge-partial discharge and radio interference measurement-testing of circuit breakers and surge diverting.
4. **Insulation materials and system**: Insulation system in practice, dielectric losses, ageing and life expectancy.
5. **Outdoor insulation**: materials, ageing, diagnostic, polymeric materials (EPDM,SIR), semi conducting ceramic, glazes.
7. **Breakdown in liquid dielectrics**: suspended particle mechanism.
8. **Breakdown in solid dielectrics**: intrinsic, streamer, thermal breakdown.

Reference Books:
1. High Voltage Test Technique by Kind & Feser.SBA Publication.
2. High Voltage Engineering. M.S. Nandu & V.Kamraj. TMH

03 1x37
INDUSTRIAL DRIVES AND CONTROL

L-T-P : 3-1-0
Credit : 4

1. **Introduction**: Electrical Drives & their advantages parts of electrical drives, D.C &A.C drives.
2. **Dynamics of Electrical Drives** : Torque equations, Multiquadrant operation, load torque & their types, calculation of time and energy loss in transient operation, Steady state stability, load equalization.
 Lecture : 3

3. **Selection of Motor & its power rating** : Types of motors & their enclosures, thermal model of motor for heating & cooling, classes of motor duty, rate of motor.
 Lecture : 5

4. **Control of Electrical Drives** : Introduction, Mode of operation, speed controls and drive classification closed loop control of drives, speed and current sensing, manual, semi automatic and automatic control, magnetic and static control, power circuit & control circuit and their development, inter locking and sequential operation.
 Lecture : 5

5. **D.C. Motor Drives** : Performance characteristics of DC Motors and their modifications, starting and design of starting circuit, braking, speed control, converter – controlled DC drives, chopper controlled DC drives.
 Lecture : 8

 Lecture : 6

Text Books :

1. Fundamental of Electric Drives by G.K Dubey. NPH
2. Power Semiconductor Controlled drives by G.K.Dubey. PHI
3. Power Electronics and AC Drives by B.K Boss. PHI

Reference Books :

1. Solid State Drives by K. Malarvizhi, scitech publication
2. A first course in Electric Drives by S.K.pillai. Wiley Eastern

03 1x38 INDUSTRIAL TRAINING

The curricula for all B.Tech. would include compulsory industrial training for 6 weeks carrying 2 credits to be carried out in the summer vacation at end of the sixth semester.

The six-week industrial training undergone by the student in the summer vacation after the sixth semester would be assessed within five weeks after commencement of the seventh semester. The students are required to submit a report on the training received and give a seminar on the basis of which a grade would be awarded. The students are also required to submit to Head of department a completion certificate in the prescribed form the competent authority of the organization where the training was received without which he/she would not be assessed.

03 1x39 PROJECT (MINOR)

03 1x40 SEMINAR

03 1x41 PROJECT (MAJOR)

03 1342 ELECTRICAL MACHINES – 1

L-T-P : 3-0-3

Credit: 5

1. **DC Generator** : Constructional Feature and types of D.C. Machines, Types of armature winding, Action of Commutator, Principle of D.C. generator, Induced EMF, Armature reaction, Commutation, Compensating Winding and Inter Poles, External & Internal Characteristics of D.C. Generator, Critical Resistance, Critical Speed.
 Lecture : 8

2. **D.C. Motor** : Principle of D.C. Motors, Back EMF, Torque and Speed of D.C. Motors, Losses and Efficiency, Characteristics, Starting and Speed Control of Various types of D.C. Motors
 Lecture : 6
 Lecture : 10

 Lecture : 2

5. **Three Phase Transformer**: Introduction, Types, Phasor Group, Parallel Operation of three Phase Transformer, Cooling of Transformer.
 Lecture : 5

 Lecture : 11

Text Book :
2. Electrical Machine by P.S Bimbra, Khanna Publication.

Reference Book:
1. Electrical Machinery by Fitzgerald A.E & Kingsley TMH
06 1x01 FUNDAMENTAL OF INFORMATION TECHNOLOGY
L-T-P : 3-0-2 Credit : 4
Theory :
2. Computer Memory and Storage : Memory Hierarchy, RAM, ROM, Types of Secondary Storage Devices and etc. Lecture : 2
3. Information Technology Basics : Information, Technology, Role of Information Technology, Information Technology and Internet and etc. Lecture : 2
4. The Internet and Its Tools : Introduction, Evolution of Internet, Basic Internet Terms, Getting Connected to Internet, Internet Applications, Data over Internet, Web Browser, Browsing Internet Using Internet Explorer, E-mail, search Engines, Instant Messaging. Lecture : 3
5. Emerging Trends in IT : E-Commerce, Electronic Data Interchange, Smart Cards, Mobile Communication and etc. Lecture : 3
6. Computer Programming and Languages : algorithm, Flow Chart, Pseudo Code, Program Control Structures, Programming Languages, Generation of Programming Languages and etc. Lecture : 4
7. C Language : Basics, Constants, Variables and Data Types, Operators and Expressions, Input & output operations. Lecture : 8
9. Arrays : One & Two dimensional Array. Lecture : 3

Text Books :
1. Introductory to Information Technology, by ITL Education solution Ltd., Pearson Education.

Reference Books :
1. Fundamental of Computer & IT by A. Jaiswal (Wiley India).
3. The C Programming Language, 2e, by Brian W. Kernighan & Dennis M. Ritchie, PHI/Pearson Education.

Practical : Working in windows environment, Internet, C Programming based on above syllabus.

06 1x02 WEB TECHNOLOGY
L-T-P : 3-0-3 Credit : 5

5. Java Fundamental : Introduction to Java, Java and the Internet, Data Type, Variables, Operators, Strings, Input and Output, Control Flow, Arrays, Object and Classes, Member of Classes, Inheritance, Interfaces.
6. **Graphics and Applet programming in JAVA**: Introduction to Abstract Window Toolkit (AWT) and Swing, Event Handling, Working with Text input, Choice components, Menus, Dialogue Boxes, Applets and Developing Applets with HTMO, Jar Files, Exception Handling, Introduction to Multi Threading and Java

7. **Database Programming**: JDBC API

Text Books:
1. HTML Black Book by Steven Hoizner (Wiley India)
2. JAVA – How to Program by Deitel & Deitel (Pearson)

Reference Books:
1. HTML, CSS, Java Script, Perl, Python & PHP (Web Standard Programming Reference) (Wiley India)
2. JAVA – The Complete Reference, J2SE, 5/e by Schildt (TMH)
4. Core Java TM Volume I & II by Cay S. Horstmann & Gary Cornell (Pearson)
5. Internet & WWW - How to program by Deitel & Deitel (Pearson)
6. HTML & DHTML- The Complete Reference by Powell (TMH)

Practical: Programming based on above syllabus.

06 1x03 OPERATING SYSTEM

L-T-P: 3-0-3
Credit: 5

1. **Introduction**: Introduction to OS, Operating system functions, evaluation of O.S., Different types of O.S., Batch multi programmed, Time-sharing, Real-time, Distributed, Parallel.
2. **Process**: Concept of processes, process scheduling, operations on processes, inter-process communication, communication in Client-Server-Systems, overview & benefits of threads.
3. **Process Scheduling**: Scheduling criteria, preemptive & non-preemptive scheduling, scheduling algorithms.
4. **Process Synchronization**: Background, critical section problem, critical region, synchronization hardware, classical problems of synchronization, semaphores.
5. **Deadlocks**: System model deadlock characterization, methods for handling deadlocks, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock.
6. **Memory Management**: Background, logical vs. physical address space, swapping contiguous memory allocation paging segmentation.
7. **Virtual Memory**: Background, demand paging, page replacement, page replacement algorithms, allocation of frames, thrashing.
8. **File Systems**: File concept, access methods, directory structure.
9. **Disk Management**: Disk structure, disk scheduling (FCFS, SSTF, SCAN, C-SCAN)

Text Books:
2. Operating System by Dhamdhere, TMH.

Reference Books:
1. Operating System by Deitel, Deitel & Choffnes.

Practical: Familiarization with UNIX/Linux and Windows Operating Systems.

06 1x04 VISUAL PROGRAMMING

L-T-P: 3-0-3
Credit: 5

1. **Introduction**: Introduction to NET Architecture, Features of Visual Studio.NET.
2. **C#**: Introduction to C#, C# Program Outline, Variables and Expressions, Flow Control, Functions, Debugging and Error Handling, Object-Oriented Programming in C#, Classes & Objects, Defining Class Members.

4. **Data Access**: File System Data, XML, Database and ADO.NET, Data Binding.

Text Books:
2. Microsoft Visual C#.NET STEP by STEP by SHARP & JAGGER Microsoft PHI

Reference Books:
1. Professional C# 2005 by Christian Nagel, Bill Evgen, Wiley India.
2. The Complete Reference C# 2.0 by Schildt, TMH

06 1x05 INFORMATION SECURITY

L-T-P : 3-0-0 Credit : 3

1. **Introduction, CRYPTO BASICS**: Classic Crypto, Simple Substitution Cipher, Cryptanalysis of a simple substitution, Double Transposition Cipher, One-time Pad, Project VENONA, Codebook Cipher.

2. **SYMMETRIC KEY CRYPTO**: Stream Ciphers, A5/1, RC4, Block Ciphers, Fiestel Cipher, DES, Triple DES, AES.

3. **PUBLIC KEY CRYPTO**: Knapsack, RSA, Diffie-Hellman, Uses for Public Key Crypto.

5. **SOFTWARE FLAWS AND MALWARE**: Software Flaws, Malware, Miscellaneous Software-Based Attacks.

Text Book:

Reference Books:
1. Introduction to Computer Security by Bishop and Venkatramanayya, Pearson Education.
2. Cryptography and Network Security: Principles and Practice by Stallings, PHI.

06 1x06 DATA MINING & WAREHOUSING

L-T-P : 3-0-0 Credit : 3

1. **Fundamentals**: Three concept view, Supervised learning, Unsupervised clustering, Data Mining or Data Query, Expert System or Data Mining? A simple data Mining Process Model, Data Mining Strategies, Supervised Data, Mining Techniques, Association Rules, Clustering Techniques, Evaluating Performance.

2. **Basic Data Mining Technique**: Decision Trees, Generating Association Rules, K-Means Algorithm, Genetic learning, Choosing Technology.

3. **An Excel-based Data Mining Tool**: iData Analyzer.

4. **Knowledge Discovery in Databases**: KDD process model, Noisy data, Missing data, Data Transformation, CRISP-DM process model.

5. **Data Warehousing**: Operational Database, Data Warehouse design, OLAP, Excel Pivot Tables for data analysis.

7. **Neural Networks**: Feed–Forward Neural Networks, NN Training, Building Neural Network with iDA.

8. **Statistical Techniques**: Linear Regression Analysis, Logistic Regression, Bayes Classifier, clustering Algorithm, query and Visualization Techniques, Machine Learning and Statistical Techniques.

9. **Specialized Techniques**: Time Series Analysis, Mining the Web, Mining Textual Data, Improving Performance.

Text Books:

1. Data Mining: A tutorial-based Primer, by Richard J. Roiger, Michael W. Geatz, Pearson Education.
2. Data Mining: Introductory & Advanced topic, by Margaret H. Dunham, Pearson Education.

Reference Books:

1. Data Warehousing, Data Mining & OLAP by Berson/Smith, TMH
2. The Microsoft Data Warehouse Toolkit: With SQL server 2005 and the Microsoft business Intelligence toolset by Ralph Kimball, Wiley India.
3. Building the Data warehousing by W. H. Inmon, Wiley India.

DISTRIBUTED COMPUTING & ITS APPLICATION

L-T-P : 3-0-3

Credit : 5

1. **Introduction to Distributed Computing Systems**: Different forms of Computing Distributed Computing Programming.
2. **Java & Distributed Computing**: Socket API (TCP and UDP based Sockets), Remote Method Invocation (RMI), Introduction to Remote procedure Call, RPC implementation in Java using RMI, Concept of CORBA.
4. **Understanding of JSP**: Understanding the web page life cycle in JSP, JSP Documents, its Elements, JSP Tab extensions, Tag libraries and its validation.

Text Books:

1. Distributed Computing – Principles and Applications by M.L.Liu (Pearson Education)
2. Java – How to Programme by Deitel & Deitel
3. J2EE 1.4 Bible by Megovern (Wiley India)

Reference Books:

1. Java Server Programming (Black Book) (Dreamtech Press)
2. The J2EE tutorial 2/e by Bodoff, (Sun-Pearson Education Asia)

INTRUSION DETECTION

L-T-P : 3-0-0

Credit : 3

1. **Basics**: Understanding Intrusion Detection, Unauthorized activity, TCP Dump.
2. **Architecture**: IDS and IPS architecture, IDS and IPS internals.

Text Book:

1. Intrusion Detection & Prevention by Carl Endorf, Eugene Schultz and Jim Mellander, TMH.
06 1x09 XML WEB SERVICES
L-T-P : 3-0-3 Credit : 5
1. **XML** : Introduction to XML, DTD, CSS, Namespace, Schema, XSD, XSL.
2. **Introduction to Web Services** : The Web Services Type System, Data Type Mappings.
3. **SOAP** : Communication on the Web
5. **SOAP Tools** : SOAP Toolkit, components and architecture, exposing and invoke Web services.
6. **Developing Web Services** : Using ASP.Net application using c# programming environment.
7. **Web Services** : Working with WSDL and invoking them using .NET client/Java Client through the code.
8. **SOAP Header** : Managing the risks of Web Service, Interface-Based Web Service.
9. **Development of Interface-based Programming** : WSDL bindings, Reusable Web Services Infrastructure.
11. **SOAP Toolkit Interoperability**

Text Books :
(1) XML 1.1 Bible, Edition by Elliotte Rusty Harold (Wiley)
(2) XML Web Services & Data Revolution by Coyle (Pearson Education Asia)

Reference Books :
(1) Beginning XML by David Hunter, Andrew Watt (Wrox Publication)
(2) Professional ASP.NET 2.0 by Thiru Thangarathinam (Wrox Publication)

06 1x10 MULTIMEDIA TECHNOLOGY AND APPLICATION
L-T-P : 3-0-0 Credit : 3
2. **Text and Audio** : Text: Types of Text, Ways to Present Text, Aspects of Text Design, Character, Character Set, Codes, Unicode, Encryption; Audio: Basic Sound Concepts, Types of Sound, Digitizing Sound, Computer Representation of Sound (Sampling Rate, Sampling Size, Quantization), Audio Formats, Audio tools, MIDI.
4. **Synchronization** : Temporal relationships, synchronization accuracy specification factors, quality of service.
5. **Storage models and Access Techniques** : Magnetic media, optical media, file systems (traditional, multimedia)
6. **Multimedia devices** : Output devices, CD-ROM, DVD, Scanner, CCD
7. **Image and Video Database** : Image representation, segmentation, similarity based retrieval, image retrieval by colour, shape and texture: Indexing k-d trees, R-trees, Quad trees; Case Studies : QBIC, Virage, Video Content querying, video segmentation, indexing.

Text Books :
2. Multimedia Systems Design by Prabhat K. Andleigh & Kiran Thakrar, PHI.
3. Principles of Multimedia by Parekh, TMH.
Reference Books:
1. Multimedia Literacy by Fred Hoffsteller, McGraw Hill.
3. Multimedia in Practice : Technology and Application by J. Jeffcoate, PHI.
4. Multimedia Communications by Fred Halsall, Pearson Ed.

06 1x11 WIRELESS & MOBILE COMMUNICATION
L-T-P : 3-0-0 Credit : 3
3. Telecommunication System: GSM, DECT, TETRA.
5. Mobile Technology: Mobile-IP, Mobile transport layer, Mobile TCP, Concept of WAP and WML.

Text Books:
(1) Mobile Communication 2/e by Schiller (Pearson Education).
(3) Beginning J2ME from Novice to Professional by Singli Jonathan (Wiley India)

Reference Books:
(1) Wireless Communications & Network by Stallings (Pearson Education)
(2) Wireless and Mobile All – IP Networks by Lin & Pang (Wiley India).
(3) Core J2ME Technology and MIDP Muchow (Pearson Education Asia – Sun)
(4) Beginning Mobile Phone Game Programming Morrison (Pearson Education).

06 1x12 INTRODUCTION TO INFORMATION TECHNOLOGY
L-T-P : 2-0-1 Credit : 3
Theory:
2. Computer Memory and Storage: Memory Hierarchy, RAM, ROM, Types of Secondary Storage Devices and etc.
3. Information Technology Basics: Information, Technology, Role of Information Technology, Information Technology and Internet and etc.
4. The Internet and its Tools: Introduction, Basic Internet Terms, getting Connected to Internet, Internet Applications, Data over Internet, web Browser, Browsing Internet Using Internet Explorer, E-mail, Search engines.
5. Emerging Trends in IT: E-Commerce, Electronic Data Interchange, Smart Cards, Mobile Communication and etc.
6. C Language: flow Chart, Constants, Variables and Data Types, Operators and expressions, Input & output operations.
8. Arrays: One & Two dimensional Array.

Text Books:
1. Introduction to Information Technology, by ITL Education Solution Ltd., Pearson Education.
2. Programming in ANSI C by E. Balagurusamy 4th Ed.
Reference Books:
1. Fundamental of Computer & IT by A. Jaiswal (Wiley India)
2. The C Programming Language, 2e, by Brain W. Kernighan & Dennis M. Ritchie, PHI/Pearson Education.

Practical: Working in Windows environment, Internet, C programming based on above syllabus.

06 1x13 BIOMETRIC SECURITY
L-T-P : 3-0-0 Credit : 3

Theory
2. Finger scan – Features – Components – Operation (Steps) – Competing finger Scan technologies – Strength and weakness. Types of algorithms used for interpretation.
3. Facial Scan - Features – Components – Operation (Steps) – Competing facial Scan technologies – Strength and weakness.
4. Iris Scan - Features – Components – Operation (Steps) – Competing iris Scan technologies – Strength and weakness.
5. Voice Scan - Features – Components – Operation (Steps) – Competing voice Scan (facial) technologies – Strength and weakness.

Text Books:
1. Biometrics – Identity Verification in a Networked World by Samir Nanavati, Michael Thieme, Raj Nanavati, WILEY- Dream Tech

Reference:

06 1x14 NETWORK SECURITY
L-T-P : 3-0-0 Credit : 3

7. E-mail Security: The E-mail Risk, E-mail Protocols, E-mail Authentication.

11. **Communications** : Secret Communication, Covert Communication, Applications of Secure/Covert Communication.

13. **Security Assessment, Testing and Evaluation** : Information Assurances Approaches and Methodologies, Certification and Accreditation, Penetration testing, auditing and Monitoring.

Text Book : Network Security Bible by Cole, Krutz and Conley, Wiley dreamtech

06 1x15 INTERACTIVE COMPUTER GRAPHICS

L-T-P : 3-0-0
Credit : 3

4. **Attributes of Output Primitives** : Line Attributes, Curve Attributes Colour and Grayscale Levels, Area-Fill Attributes, Character Attributes, Bundled Attributes, Inquiry functions, Antialiasing.

6. **Two Dimensional Viewing** : The Viewing Pipeline, Viewing Coordinate Reference Frame, Window-to-Viewport Coordinate transformation, Two-dimensional Viewing functions, Clipping Operations, Point Clipping, Line Clipping, Polygon Clipping, Curve Clipping, Text Clipping, Exterior Clipping.

8. **Three-Dimensional Object Representations** : Polygon Surface, Curved Lines and Surfaces, Quadric Surfaces, Super Quadrics, Blobby Objects, Spline Representations, Cubic Spline Interpolation Methods, Bezier Curves and Surfaces, Bezier Curves, Properties of Bezier Curves, Design Techniques Using Bezier Curves, Cubic Bezier Curves, Bezier Surfaces, B-Spline Curves and Surfaces, B-Spline Curves, Uniform, Periodic B-Splines, Cubic, Periodic B-Splines, Open Uniform B-Splines, B-Spline Surfaces, Beta-Splines, Beta Spline Continuity Conditions, Cubic, Periodic Beta-Spline Matrix Representation, Rational Splines.

06 1x16 BIO-INFORMATICS
L-T-P : 3-0-0 Credit : 3

1. Overview: Information networks, Protein information resources, Genome information resources, DNA sequence analysis, Pairwise alignment techniques, Multiple sequence alignment, Secondary database searching, sequence search protocol, Analysis packages.

2. Introduction: The dawn of sequencing, bioinformatics concepts, The biological sequence/structure deficit, Genome projects, bioinformatics importance, Pattern recognition and prediction, Folding problem, Role of chaperones, Sequence analysis, Homology and analogy.

4. Protein information resources: Introduction, Biological databases, Primary Sequence Database, Composite protein pattern databases, Secondary databases, Composite protein pattern databases, Structure classification databases.

5. Genome information resources: Introduction, DNA sequence database, Specialised genomic resources.

6. DNA sequence analysis: Introduction, Importance, Gene structure and DNA sequences, Features of DNA sequence analysis, Issues in the interpretation of EST searches, Two approaches to gene hunting, The expression profile of a cell, cDNA libraries and ESTs. Different approaches to EST analysis, Effects of EST data on DNA databases.

Text Books:
1. Introduction to bioinformatics by T.K.Attwood/Smith/Phukan, Pearson Education.
2. Bioinformatics Methods and Applications by S.C.Rastogi, PHI.

Reference Books:

06 1x17 INTERNET AND INTRANET ENGINEERING
L-T-P : 3-0-0 Credit : 3

Text Book: Internet and Intranet Engineering by Daniel Minoli, Tata-McGraw Hill.

Reference Books:
1. Computer Networks and Internets by Douglas E. Comer; PE.
2. Internet working with TCP/IP by Douglas E. Comer; PE.
3. TCP/IP protocol suite by Forouzan Behrouz A; TMH.
4. Computer Networks by Andrew S. Tanenbaum; PHI.
5. Data and Computer Communication by William Stallings; PHI.

06 1x18 E-COMMERCE & ERP

<table>
<thead>
<tr>
<th>L-T-P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

5. **E-Payment System**: Digital Payment requirement, Digital token Based E-Payment Systems, E-Cash, Risk, Designing E-Payment Systems, Digital Signature, Online Financial Services in India.
7. **E-Strategy**: The Virtual Value Chain, Seven Dimensions, Planning the E-Commerce Project, Knowledge Management.

Text Books:
1. E-Commerce An Indian Perspective by P.T.Joseph, PHI.
2. Enterprise Resource Planning Theory & Practice by Rahul V.Altekar, PHI.

Reference Books:
1. Introduction to E-Commerce by Rayport & Jaworski, TMP.
2. Frontiers of Electronic Commerce by Kalakota & Whinston, Pearson Education.
3. E-Commerce: Strategy Technologies & Applications by David Whiteley, TMH.

06 1x19 IMAGE PROCESSING & GIS

<table>
<thead>
<tr>
<th>L-T-P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

3. **Mathematical Preliminaries**: Neighbour of pixels, Connectivity, Relations, Equivalence & Transitive Closure; Distance Measures, Arithmetic/Logic Operations, Fourier Transformation, Properties of the Two Dimensional Fourier Transform, Discrete Fourier Transform, Discrete Cosine & Sine Transform.
5. **Image Restoration**: Degradation Model, discrete Formulation, Algebraic Approach to Restoration –
7. **Image Segmentation**: Point Detection, Line Detection, Edge detection, combined detection, Edge Linking & Boundary Detection – Local Processing, Global Processing via The Hough Transform; Thresholding –
Foundation, Simple Global Thresh holding Optimal Thresh holding; Region Oriented Segmentation – Basic formulation, Region Growing by Pixel Aggregation, Region Splitting & Merging.

8. **An Overview of GIS** : Definition of GIS, Features & Functions, GIS as an Information System, GIS & Cartography, GIS data feeds, Historical development of GIS.

Text & References :
2. Getting Started with GIS by Clarke Keith. C; PE.
5. Introduction to Geographical Information Systems by Chang, TMH.

06 1x20
E-CUSTOMER RELATIONSHIP MANAGEMENT
L-T-P : 3-0-0
Credit : 3

5. **Post-order customer support issues** : Tracking Orders, Problems Resolution.
6. E-CRM Case Study of Circuitcity.com
E-CRM Case Study of Amazon.com

Text Book : e-Business Customer Relationship Management Essentials by John W.Gosney and Thomas P.Boehm, PHI.

06 1x21
WEB PROGRAMMING
L-T-P : 3-0-0
Credit : 3

Text Books:
2. Core JavaTM Volume II by Cay S. Horstmann & Gary Cornell (Pearson)

Reference Book: J2EE 1.4 Bible by McGovern (Wiley India)

06 1X22 MANAGEMENT INFORMATION SYSTEM

<table>
<thead>
<tr>
<th>L-T-P: 3-0-0</th>
<th>Credit: 3</th>
</tr>
</thead>
</table>

3. **Applications of Management Information System to E-Business**.

5. **Case Studies**: Tata Home Finance Ltd. and Engineering Product Limited.

Text Book: Management Information Systems by W. S. Jawadekar, TMH.

Reference Books:
2. Management Information System by S. Sadagopan, PHI.

06 1X23 MINOR PROJECT

<table>
<thead>
<tr>
<th>L-T-P: 0-0-3</th>
<th>Credit: 2</th>
</tr>
</thead>
</table>

06 1X24 PROJECT – I

| L-T-P: 0-0-6 | Credit: 4 |

06 1X25 PROJECT – II

| L-T-P: 0-0-9 | Credit: 6 |

06 1X26 INDUSTRIAL TRAINING

| L-T-P: 0-0-3 | Credit: 2 |

Students need to do a project work which may be a continuation of the project work done in previous Semester.
02 1x01 ELEMENTS OF MECHANICAL ENGINEERING

L-T-P : 3-0-2 Credit : 4
1. ENERGY RESOURCES : Renewable or non-conventional sources of energy, their origin forms – solar, wind, biogas and biomass energy, their merits & demerits, major applications. – Brief description.
 Lecture : 4
 Non-renewable or conventional sources of energy, the fossil fuel, coal, petroleum and natural gas.
2. REVIEW OF BASIC CONCEPTS OF THERMODYNAMICS : Thermodynamics system, properties, state, processes and cycles, Heat, work and internal energy.
 Lecture : 2
 Lecture : 4
4. PRIME MOVERS: Simple steam turbine, gas-turbine, IC engines (SI and CI), their brief description and principles of working.
 Lecture : 6
5. POWER PLANT : Principles of working of thermal, hydel and nuclear power plants, work output and efficiency.
 Lecture : 4
6. BASIC CONCEPT OF REF. AND AIR CONDITIONING : Principles of working of vapour compression, vapour absorption and air refrigeration; Principles of air conditioning systems.
 Lecture : 6
7. ENGINEERING MATERIALS AND THEIR PROPERTIES : Ferrous and non-ferrous metals : Mechanical properties e.g. strength, hardness, resilience etc.
 Lecture : 4
8. HEAT TREATMENT OF STEEL : Annealing, tempering, quenching, case-hardening etc.
 Lecture : 2

Text Book :
(1) Basic Mechanical Engineering by TJ Prabhu, V. Jaiganesh by Scitech.

02 1x02 ENGINEERING GRAPHICS

L-T-P : 2-0-4 Credit : 5
1. Introduction, drawing instruments, sheet layout, lines, lettering, dimensioning, engineering curves (ellipse, parabola, hyperbola, spiral).
 Lecture : 3
2. Orthographic projection : Projection of points, projection of straight line.
 Lecture : 3
3. Projection of planes.
 Lecture : 2
4. Projection of solids (Prism, Pyramid, Cone, Cylinder) Axis inclined to one reference plane.
 Lecture : 3
5. Section of solid (Prism, Pyramid, Cone, Cylinder) Axis inclined to one reference plane.
 Lecture : 3
 Lecture : 3
7. Intersection of surfaces : Axes of both solids at right angles.
 Lecture : 2
8. Isometric projection.
 Lecture : 3
9. Conversion of pictorial view into orthographic view : Simple cases.
 Lecture : 4
10. Introduction to computer aided drawing.
 Lecture : 2

Practical
 Understanding the AutoCAD windows and the drafting tools, drawing 2D objects.

Text Book :
1. Engineering Drawing by ND Bhatt

02 1x03 WORKSHOP

L-T-P : 0-0-6 Credit : 4
1. Black smithy shop : Introduction, Study & use of smithy forging tools, anvil, swage block, chisels, punches, hammers, sledge hammer, study of air blower M/c & sheering M/c
 Job making – (i) Eye Nail & Ring
 Lecture : 7
2. Carpentry shop : Introduction, study & use of various tools like cutting tools, planning tools, striking tools, drilling and boring tools, holding tools etc., Study of wood turning lather machine,
 Job making – (i) Half lap joint (ii) dovetail joint (iii) file handle
 Lecture : 7
3. **Fitting shop**: Introduction, study & use of different tools, cutting tools, marking tools, drill bit, die & tap & types of files.
 - Job making – (i) Matching gauge (ii) Chipping & filing.
 Lecture : 7

4. **Foundry shop**: Introduction, study & use of cupola furnace, various tools, pattern making moulding boxes.
 - Job making – (i) Stuffing gland box (ii) Vee block.
 Lecture : 7

Text Book/Reference Book :
1. Workshop technology by Hazra Chaudhary
2. Workshop technology by Raghubansi
3. Manual on workshop Practice by Kannaiah
4. Workshop manual by Kannaiah

02 1x04 WORKSHOP PRACTICE – II
L-T-P : 0-0-6
Credit : 4

1. **Machine shop**: Introduction, study and use of lather machine, shaper machine including operations, holding devices and materials for cutting tools.
 - Job making – (i) taper Stud (ii) angle block

2. **Welding shop**: Introduction, study and use of welding tools and devices, Study of electric arc welding machine.
 - Job making – (i) Lab Joint (ii) Other joints

3. **Sheet Metal shop**: Introduction, study and use of various tools, soldering and brazing.
 - Job making – Conical Funnel

02 1305 MATERIAL SCIENCE
L-T-P : 3-1-0
Credit : 4

 Lecture : 4

2. Phase rule, phase diagram, binary system, binary eutectic systems, eutectoid and peritectic reaction, The iron carbon system, the iron – iron carbide phase diagram.
 Lecture : 10

3. Phase transformation in metals – Isothermal transformation diagrams (or Time-Temperature-Transformation plots), Martensite, Continuous cooling transformation diagram – annealing, Normalizing, Tempered Martensite.
 Lecture : 10

4. Cast iron – grey cast iron, ductile (nodular) cast iron, white cast iron, malleable cast iron.
 Lecture : 10

 Lecture : 10

Text Book :

02 1306 STRENGTH OF MATERIAL
L-T-P : 3-0-3
Credit : 5

 Lecture : 13

2. **Torsion**: Torsion stress and deformation in circular member, design of circular member in torsion.
 Lecture : 4

3. **Shear force and bending moment diagram**: of the transverse section of the beam.
 Lecture : 4
4. **Deflection of beams**: Deflection of integration, deflection by moments – area method.
 Lecture: 5

5. **Two dimensional stress analysis**: Plane stress components on general plane at a point, Mohr’s circle of stress.
 Lecture: 5

6. **Introduction to advance mechanics of solid**: Thin cylinder, thick cylinder – radial and hoop stresses, application of compound stress theories, elastic strain energy and its application: Elastic strain energy of a rod under various kinds of loading elastic strain energy for various states of stress. Simple application, Castiglione theorem.
 Lecture: 11

Text Books:

1. Strength of material by GH Ryder
2. Mechanics of solids by Kazimi
3. Mechanics of solids by LS Srinath
4. Mechanics of solids by Singh & Jha

Reference Books:

1. Mechanics of solids by Timoshenko & Gere
2. Mechanics of solids by Popov

02 1307 **THERMODYNAMICS**
L-T-P : 3-1-0
Credit: 4

1. **Basic concept**: Thermodynamic system and their properties, thermodynamic equilibrium, quasi-static and non quasi-static process, zeroth law and temperature equilibrium concepts.
 Lecture: 3

2. **First law of thermodynamics**: Concept of heat and work, first law applied to closed and open system, internal energy and enthalpy, flow work, laws of perfect gas, specific heat, first law applied to flow & non flow process.
 Lecture: 5

3. **Second law of thermodynamics**: Concept of heat engine, refrigerator, heat pump and their range of working temperature, Kelvin-planck’s and claussius’ statements and their equivalence, Entropy, calculation of entropy change for processes, reversibility, entropy principles, in equality of claussius, available and unavailable energy.
 Lecture: 8

4. **Properties of pure substances**: Properties of steam and process with steam, Use of steam tables and mollier charts.
 Lecture: 4

5. **Helmholtz and Hibb’s function**, Maxwell’s relation.
 Lecture: 3

6. **Ideal cycles**: Air standard cycles, Otto, Diesel, Dual and Brayton cycle, Comparison of Otto, Diesel and Dual cycle.
 Lecture: 6

7. **Vapour cycle**: Carnot and Rankine cycle, Regenerative and reheat cycle.
 Lecture: 6

8. **Non reacting mixture**: Mixture of two ideal gases and their properties.
 Lecture: 2

9. **Psychometry**: Air and water-vapour mixture and their properties, adiabatic saturation, Use of psychometry charts, Simple introduction to psychrometric process.
 Lecture: 5

Text Book/reference Book:

1. Engineering Thermodynamics by PK Nag
2. An introduction to thermodynamics by YVC Rao
3. Fundamental of thermodynamics by Van wylem, Wiley India
4. Thermodynamics by Cengel

02 1x08 **KINEMATICS OF MACHINERY**
L-T-P : 3-0-0
Credit: 3

1. **Velocity and acceleration in mechanism**:
 - Relative velocity method and instantaneous center method
 - Acceleration diagram: Coriolis component of acceleration.
 Lecture: 8

2. **Friction devices**:
3. **Fundamental law of gearing**, basic terminology of gears, arc of contact and path of contact of involute gears, minimum number of teeth on the pinion to avoid interference, Gear trains—simple, compound and planetary, tooth load and torque.
Lecture : 7

4. **Balancing** : balancing of evolving masses in the same plane by a single revolving mass — Balancing of revolving masses in different planes by two revolving masses in suitable planes.
Lecture : 10

Lecture : 7

Text Books :

1. Theory of Machine by Thomas Bevan
2. Theory of Machine by RS Bansal
3. Theory of Machine by Sadhu Singh

02 1x09 MANUFACTURING BY SHAPING AND JOINING
L-T-P : 3-0-3
Credit : 5

1. **Casting** : Principles of pattern making, allowances in patterns and core boxes, sand mould casting, constituents and properties of moulding sand and their tests, types of sand moulds, method and principles of gating, risering, use of cores and chills, cleaning of casting, defects in castings and their remedies, sand mould machines, melting and casting practices relating to cast iron, steel, aluminium and its alloys, copper and its alloys. Cupola, crucible and electric furnaces, metal mould casting, gravity casting, die casting, centrifugal casting, non-metallic mould casting-shell mould casting, Investment casting, plaster of paris mould casting.
Lecture : 12

2. **Mechanical working of metals** : Hot and cold working of metals, their comparison and limitation, Hot working process — forging, roll forging, rolling piercing, extrusion, cold working processes — rolling, spinning, roll forming, cold heating, swaging, thread rolling, tube and wire drawing, coining, embossing, tube rolling.
Lecture : 8

Lecture : 4

Lecture : 12

Lecture : 6

Text Books :

1. Production technology by RK Jain
2. Manufacturing technology by PN Rao

02 1x10 FLUID MACHINERY
L-T-P : 3-0-3
Credit : 5

1. **Introduction** — classification of fluid machinery.
Lecture : 1

2. **Dynamic action of fluid jet** – Impact of fluid jet on fixed and moving flat places, impact of jet on fixed and moving curved vanes, flow over radial vanes, jet propulsions.
Lecture : 4

3. **Euler’s fundamental equation**, degree of reaction.
Lecture : 2
4. Hydraulic turbines, introduction, classification, impulse turbine, construction details, velocity triangles, power and efficiency calculations, reaction turbines; constructional details, working principle, velocity triangles, power and efficiency calculations, draft tube, cavitation, governing. Lecture: 10

5. Principle of similarity in fluid machinery; unit and specific quantities, testing models and selection of hydraulic turbines. Lecture: 10

6. Positive displacement pumps: Reciprocating pump; working principle, classification, slip, indicator diagram, effect of friction and acceleration, theory of air vessel, performance characteristics gas gear oil pump and screw pump. Lecture: 3

7. Rotodynamic pumps: Introduction, classification, centrifugal pump; main components, working principle velocity triangle, effect of shape of blade specific speed, heats, power and efficiency, calculations minimum steering speed, multi stage pumps, performance characteristic, comparison with reprobating pump. Lecture: 4

8. Air compressor: Reciprocating compressor, introduction, P-V diagram, calculation of isothermal and adiabatic work and efficiency, free air delivery, slippage, volumetric efficiency, effect of clearance, multistage compression, inter cooling. Lecture: 7

Text Books:
1. Hydraulic Machine by Jagdish Lal
2. Hydraulics & Hydraulic Machines by Vasandari
3. Hydraulic Machine by RD Purohit

02 1x11 MACHINE DRAWING
L-T-P: 1-0-3 Credit: 3
1. Introduction to full section, Half section, revolved-section off-set section. Lecture: 2
2. Nut Bolts, Riveted joints, Thread profiles, Screw jack. Lecture: 3
3. Bushed bearing, pedestal, bearing, foot step bearing. Lecture: 2
4. Flanged coupling, flexible coupling, solid coupling. Lecture: 2
5. Stuffing Box. Lecture: 1
6. Eccentric. Lecture: 1
7. Cross Head. Lecture: 1
8. Assembly of dissembled parts. Lecture: 1
9. Disassembly of assembly parts. Lecture: 1

Text Books:
1. Engineering Drawing by ND Bhatt
2. Engineering Drawing by KL Narayna & Kannaiah

02 1x12 STEAM POWER SYSTEM
L-T-P: 3-0-3 Credit: 5
1. Analysis of steam power cycle, Reheat pressure and degree of regeneration process heat & power generation. Lecture: 3
5. Steam condenses: Types, cooling water requirement, air leakage & air pump capacity, vacuum & condenser, efficiency steam ejector, spray pond 7 cooling tower. Lecture: 6
6. **Instrumentation** in steam turbine plan.

Text Books:
1. Thermal engineering by CP Gupta & R Prasad
2. Steam turbine theory & practice by WB Keaton
3. Heat Engines (Vol II) by R Yadav
4. Power Plant Engineering by PK Nag

02 1x13 DYNAMICS OF MACHINERY

L-T-P : 3-0-3

1. **Force analysis of mechanism** : Dynamics of plane motion of a rigid body, dynamically equivalent two mass system, correction torque, forced in mechanism and machines.
2. **Turning moment diagram** : Fluctuations of crankshaft speed and energy in a direct acting engine mechanism, flywheels.
3. **Cams** : Classification of cams and followers, types of follower and retardation, cam profile and generation of concentric and offset radial cam profiles by graphical method. cams with specified contours tangent cam with roller follower, circular arc cam with flat follower.
4. **Analysis of gyroscopic motion** : Principle of gyroscope, gyroscopic couple and gyroscopic reaction couple, gyroscopic effects on the movement of ships, aeroplanes, two wheeled and four wheeled vehicles, gyrostabilizers.
5. **Effects of inertia of reciprocating masses on engine frame** : Unbalanced primary and secondary forces and couples, balancing of primary and secondary forces, partial balancing of locomotives, balancing of multicylinder in line and radial engines, direct and reverse cranks methods for balancing of radial engines.

Text Books:
1. theory of machines by Thomas Bevan
2. Theory of machines by Shah and Jadhwani
3. Mechanical Vibration by William Thompson

02 1x14 MACHINE TOOLS AND MACHINING

L-T-P : 3-0-3

1. **Metal cutting and Machine Tools** : Metal cutting : Mechanics of metal cutting, Geometry of tool and nomenclature, Tool materials, Orthogonal vs oblique cutting. Mechanics of chip formations, types of chips, tools angles, shear angle, Merchant's force circle diagram, Cutting forces, power required, Cutting fluids/lubricants, Tools wear and tool life.
2. **Machine Tools** :
 (a) Lathe : Principle, types, operations, turret/capstan, semi/automatic, Tool layout.
 (b) Shaper, slotted, planer, operation, drive.
 (c) Milling, Milling cutter, up & down milling, dividing head indexing, Max chip thickness, power required.
 (d) Drilling and boring, reaming tools, Geometry of twist drill, Grinding, Grinding wheel, Abrasive, cutting action, grinding wheel specification, Grinding wheel wear, alterations, wear, fracture wear, dressing and trimming. Max chip thickness and guest criteria, Flat and cylindrical grinding, Centreless grinding, Super finishing, Honing lapping, Polishing.
3. **Computer controlled manufacturing process** : NC, CNC, DNC, part programming, Introduction to computer aided manufacturing and robotics.
4. **Metrology** : Tolerance and limit systems, limit gauges, Measurement of surface roughness, Inspection of gears and screw threads.
5. **Jigs and Fixtures** : Locating elements, clamping devices, principles of Jigs and fixtures design.
02 1x15 DESIGN OF MACHINE ELEMENTS

L-T-P : 3-0-3
Credit : 5

1. **Introduction**: Engineering material and their properties, Manufacturing consideration in machine design, factor of safety.
 Lecture : 4

2. **Simple stresses in machine parts**, torsional and bending stresses, dynamic loads, stress concentration.
 Lecture : 4

3. **Design of riveted joints**, welded joints, bolted joint, cotter joint, knuckle joint, pressure vessels and pipe joints.
 Lecture : 4

4. **Design of keys**, couplings, shafts levers, columns, studs, power screw, belt drive, pulley
 Lecture : 12

5. **Springs**, clutches and brakes.
 Lecture : 14

Practical: Minimum six design problems pertaining to theory paper syllabus.

Text Books:

1. Design of machine elements by VB Bhandari (TMH)
2. Design of machine elements by Sharma & Purohit (PHI)
3. Design data book by Mahadevan
4. Design data book by PSG institute of technology, Coimbatore
5. Design data book by Suresh Verma, Jadon

Reference Books:

1. Mechanical Engineering Design by Shigley
4. Machine design by Sharma & Agarwal (SK Kataria)

02 1x16 HEAT AND MASS TRANSFER

L-T-P : 3-0-3
Credit : 5

1. **Introduction**: Basic concepts and modes of heat transfer.
 Lecture : 1

2. **Conduction**: General three dimensional heat conduction equation; one dimensional steady heat conduction through composite plane walls; cylinders and spheres; critical radius of insulation.
 Lecture : 6

3. **Extended surface**: Heat transfer from extended surfaces of uniform cross section.
 Lecture : 6

4. **unsteady heat conduction**: one dimensional unsteady heat conduction, lumped system analysis; use of Heisler chart, periodic changes of surface temperature.
 Lecture : 4

5. **Convection**: Free and forced convection, hydrodynamic and thermal boundary layer equation over flat plate, laminar boundary layer analysis, fully developed heat transfer through smooth pipes, relation between fluid friction and heat transfer forced convection correlations, laminar free convection on a vertical flat plate, empirical co-relations, application of dimensional analysis.
 Lecture : 10

6. **Heat exchange**: Types, LMTD, effectiveness, NTU method, single and multipass.
 Lecture : 5

7. **Radiation**: Physical mechanism, radiation properties, black body radiation, grey body, kirchoff’s law, Wien’s displacement law, view factor, radiation exchange between infinite planes, radiation shields.
 Lecture : 6

8. **Mass transfer**: Fick’s law, analogy between heat and mass transfer, equimolal counter diffusion, isothermal evaporation of water through stagnant air.
 Lecture : 4

Text Books:

1. Heat and mass transfer by Cengel
2. Heat and mass transfer by JP Holman
3. Heat transfer by SP Sukhatme
4. Heat and Mass Transfer Data Book by CP Kothandaraman

Reference Books:
1. Heat and mass transfer by PK Nag
2. Heat and mass transfer by Incorpera Dewit
3. Heat transfer by PS Ghosdastidar

02 1x17 NON CONVENTIONAL MANUFACTURING
L-T-P : 3-1-0

Credit : 4
1.
 Introduction: Limitation of conventional manufacturing processes, need of unconventional manufacturing process and its classification.
 Lecture : 2

2.
 Unconventional machining process: Principle and working and applications of unconventional machining process such as electro – discharge machining, electrochemical machining, ultrasonic machining, abrasive jet machining etc.
 Lecture : 12

3.
 Unconventional welding process: Principle and working and applications of unconventional welding processes such as laser beam welding, electron beam welding, ultrasonic welding, plasma arc welding.
 Lecture : 12

4.
 Explosive welding, cladding etc. under water welding, metallising.
 Lecture : 4

5.
 Unconventional forming processes, principle, working and applications of high energy forming processes such as explosive forming, electromagnetic forming, electro-discharge forming, water hammer forming, explosive compaction etc.
 Lecture : 12

Text Books:
1. Manufacturing Technology by P.N.Rao
2. Production Technology by R.K.Jain

02 1x18 COMPETITIVE MANUFACTURING STRATEGIES
L-T-P: 3–1–0

Credit : 4
1.
 The competitive environment in the market: The WTO agreement and its effect on Indian Industries, Manufacturing as a competitive strategy, Competitive Advantages and Disadvantages.
 Lecture : 6

2.
 Lecture : 8

3.
 Reengineering: TQM, MRP, ERP and simulation as tools for competitive manufacturing, Intelligent Manufacturing.
 Lecture : 8

4.
 Selection of manufacturing systems for different manufacturing scenarios: Dedicated manufacturing system, Flexible manufacturing system (FMS), cellular manufacturing system (CMS), and Re-configurable manufacturing system (RMS); Elementary of DMS, FMS, CMS, and RMS.
 Lecture : 14

5.
 Concept: of CIM, FOF, Network based manufacturing, and E-Manufacturing.
 Lecture : 5

Text Books:
1. Manufacturing Excellence in Global Markets by W. Euershelm
3. Computer Automation in Manufacturing by T.O.Boucher
4. Intelligent Manufacturing Planning by P. Gu.

02 1x19 INSTRUMENTATION AND MEASUREMENT
L-T-P: 3–1–0

Credit: 4
1.
 Functional elements of a basic measuring system, configuration of a measuring system, Methods for correction for interfering and modifying inputs.
 Lecture : 6

2.
 Static characteristics like accuracy, precision, error sensitivity etc. Dynamic characteristics terms, Concepts of mechanical loading, order of the systems, Response of zero, First and second order systems to step, ramp and sinusoidal inputs, transfer function method.
 Lecture : 8

3.
 Classification of errors and statistical analysis of experimental data.
 Lecture : 4
4. **Description of various types of transduction principles**, transducers based on variable resistance, variable induction, variable capacitance and piezo-electric effects, Displacement transducer. \textit{Lecture : 10}

5. **Microprocessor systems**, codes, Binary mathematics, Logic circuits. \textit{Lecture : 6}

6. **Data acquisition systems**, via-computers DAS hardware. \textit{Lecture : 4}

7. **Techniques for signal analysis.** \textit{Lecture : 4}

Text Book: As recommended in class.

02 1x20 REFRIGERATION & AIR CONDITIONING
L–T–P: 3–1–0
Credit : 5

1. **Air refrigeration system**: Refrigeration machine, heat pump, coefficient of performance, ideal refrigeration cycle, Bell – Coleman, refrigeration cycle, open and closed systems, application of air- refrigeration in air-crafts. \textit{Lecture : 6}

2. **Various compression systems**: Simple vapour compression refrigeration cycle, merits and Refrigerants demerits of this system over air refrigeration system, factors affecting the performance of a vapour compression refrigeration system, sub cooling and superheating of vapour, wet and dry compression, multistage vapour compression system, intercooler, flash chamber, accumulator and heat exchanger. \textit{Lecture : 8}

3. **Vapour absorption system**: Simple and modified vapour absorption refrigeration system, Electrolux refrigerator, COP of heat operated refrigeration system. \textit{Lecture : 5}

4. **Special refrigeration system**: absorption, cascade, vortex, thermoelectric and steam jet refrigeration system. \textit{Lecture : 4}

5. **Refrigerants**: classification and nomenclature of refrigerants, primary and secondary refrigerants, properties of some common refrigerants, physical, chemical and thermodynamics properties, selection of refrigerants, leakage of refrigerants and methods of detection. \textit{Lecture : 3}

6. **Equipment**: Elementary discussion of refrigerating equipment, ice plant and cold storage. \textit{Lecture : 1}

7. **Psychometry**: Properties of air vapour mixture, wet bulb, dew point & dry bulb temperatures, humidity, specific humidity, humidity ratio, degree of saturation, relative humidity, total heat psychrometric relation, psychrometric charts and its uses, psychometric processes evaporative cooling. \textit{Lecture : 5}

8. **Air conditioning**: General principle and requirement for comfort and air conditioning, thermodynamics of human body, estimation of heating and cooling loads, capacity of cooling coils, humidification and dehumidification unit and conditioner, central air conditioner, year around air condition, humidity and temperature control, industrial application of air conditioning system. \textit{Lecture : 10}

Text Book:
1. Refrigeration and air conditioning by C P Arora
2. Refrigeration and air conditioning by Manohar Prasad
3. Refrigeration and air conditioning by Jordon & Priester

Reference Book:
1. Refrigeration and air conditioning by Domkundwar
2. Refrigeration by Stoecker

02 1x21 MECHANICAL SYSTEM DESIGN
L–T–P: 3–1–3
Credit : 5

Design and IC Engine parts
1. Cylinder, trunk position, connecting rod, crank shaft, value gear. \textit{Lecture : 15}
2. Design of centrifugal pump. \textit{Lecture : 06}
3. Design of fly wheel. \textit{Lecture : 02}
4. Design of hydraulic press. \textit{Lecture : 02}
5. Bearing types, selection, design of journal, ball and roller bearing. \textit{Lecture : 05}
6. Design of gears (spar and helical) & gear boxes. \textit{Lecture : 07}
7. Chain drive and brackets. \textit{Lecture : 05}

Text Book:
1. IC Engine by Maleev
2. Machine design by Maleev & Hartman
3. Design of M/C elements by V B Bhandari
4. Design of M/C elements by Sharma & Purohit
5. Design data book by PSG institute of Technology
6. Design data book by Kale

Reference Book:
1. Mechanical Engg. Design by Shigely

02 1x22 INTERNAL COMBUSTION ENGINE AND GAS TURBINE
L-T-P: 3-0-3
Credit : 5

1. Introduction : classification : Two strokes, four stroke (SI and CI) engines, engines parts, engines working principle and valve timing diagram. Lecture : 3
2. Engine performance-test : purpose and types, measurement of power, Engine system & performance parameters evaluation. Lecture : 3
4. Adiabatic flame temperature, combustion processes & combustion chamber for SI and CI engines pollutant formation and control, effect of engine variables on combustion processes, knowing in SI & CI engines. Lecture : 5
5. Petroleum based fuel, gasoline & diesel fuel and their properties. Chemically correct air-fuel ratio and load variation. Lecture : 3
6. Carburetors & modern air fuel systems, compensating devices, venture and jet dimension calculation, injection system. Lecture : 6
7. Super charging, engine lubrication and cooling. Lecture : 2
9. Regenerative reheat cycles, gas turbine applications, closed cycle gas turbine. Lecture : 5

Text Book:
1. Internal Combustion Engines by V Ganesan (Tata McGraw-Hill)
3. Internal Combustion Engines - Fundamentals by Heywood
4. Internal Combustion Engines by Theory and Practical – Taylor CF
5. Gas Turbine Theory by Cohen and Rogers
6. Fundamental of Gas Turbine by Bathie WW
7. Gas Turbine by V Ganesan (Tata McGraw-Hill)

02 1x23 OPERATION RESEARCH
L-T-P: 3-1-0
Credit : 4

1. Scope and application of operation research. Lecture : 2
2. Linear programming, graphical and simplex method. Lecture : 4
3. Transportation and assignment models. Lecture : 4
4. Simulation and Monte-Carlo techniques. Lecture : 4
5. Queuing theory (single and double channel). Lecture : 4
6. CPM and PERT and CPM-crashing networks. Lecture : 4
7. Dynamic programming. Sequencing model (n jobs-2 machines), Replacement problems and Reliability theory, Inventory models with probabilistic demands and area, quantity constraints, Game theory (competitive strategies). Lecture : 12
8. Non-Linear Programming (Kuhn and Tucker condition).

Text Book: As recommended in class.

02 1x24 AUTOMOTIVE MECHANICS

L-T-P: 3-1-0
Credit: 4

1. **Description of power unit**: Fuel supply system and engine lubrication.
Lecture: 6

2. **Transmission requirements**: Fluid and automatic transmission system along with their performance requirements, tractive resistance.
Lecture: 5

3. **Different types of steering systems** and performance requirements, Stability of vehicles on level road and curve path.
Lecture: 4

4. **General braking requirements**: weight transfer during braking, different types of brakes.
Lecture: 4

5. **General consideration of strength** and stiffness of vehicle frame, various suspension systems, shock absorber and engine mountage, Tyre pavement interaction forces, tyre wear & SAE terminology.
Lecture: 5

6. **Various types of ignition systems with wiring diagram**
Lecture: 6

7. **Testing of vehicles and handling characteristics**.
Lecture: 4

8. **Preventive maintenance**, trouble shooting & tuning of power unit
Lecture: 4

9. **Pollution due to vehicles emission**, Effect of design and operating condition on pollution.
Lecture: 4

Text Book:
1. Automotive Mechanics by Crouse
2. Automobile Engineering by KM Gupta

Reference Books:
1. Automobile Engineering by Newton & Steeds

02 1x25 EXPERIMENTAL STRESS ANALYSIS

L-T-P: 3-1-0
Credit: 4

1. **Introduction to the theory of elasticity**, General principles governing the approach to experimental stress analysis techniques, Whole field and point per point information.
Lecture: 10

2. **Photo elasticity**: Light and optics as related to photo elasticity, Theory of photo elasticity, stress optic relations, model materials, analysis techniques. Three dimensional photo elasticity.
Lecture: 12

3. **Strain- gauge techniques**, Various type of strain gauges; Electrical resistance, strain gauges and semiconductor gauges.
Lecture: 8

4. **Parameters influencing the behaviours**, Rosette analysis strain gauge circuits and Recording instruments for static and dynamic applications.
Lecture: 08

5. **Introduction to digital photo - elasticity.**
Lecture: 08

Text Book: As recommended in class.

02 1x26 TOTAL PRODUCTIVITY MAINTENANCE & VALUE ENGINEERING

L-T-P: 3-1-0
Credit: 4

1. **Work study**: Method Study- flow process charts, motion economy, Threbligs, work measurement- time study, activity sampling, synthesis, analytical estimating and PMTS, advantages an limitations.
Lecture: 10

2. **Production, Planning and control**: Production planning and production control, functions of PPC, inventory control – EOQ- and buffer stock, Types of production.
Lecture: 10

3. **TPM**: Introduction to total productivity maintenance productivity- major losses, measurement of overall performance, pillars of TMP, continuous improvements (Kaizen), Safety and Hygiene, preventive maintenance, predictive maintenance and time based maintenance.
Lecture: 10

4. **Value Engineering**: Definition and concept of VE, Type of value, Cost vs. quality, FAST diagram, phases of VE, general phase, information's phase, junction phase, oration phase, evaluation phase, application and benefits of VE,
Test Books:
1. Production, Planning and inventory control by Mcleavey and Bullington (Prentice Hall)
2. Industrial Engineering by A.P. Verma (SK Kataria & sons)
3. Industrial Engineering hand book by KB Zandin (TMH)

02 1x27 INDUSTRIAL POLLUTION
L-T-P: 3-1-0 Credit: 4
3. Environmental Impacts of Hydro-electric, Nuclear energy and chemicals forwards a solution. Lecture: 4
5. Water Pollution: Hydrologic cycle and water quality, origin of waste water and its composition, Type of water pollutants and their effects, water pollution laws: and standards, waste water sampling and analysis water quality standard, waste water treatment, Biological systems (Aerobic and Facultative ponds), Recovery of material from process effluents. Lecture: 8
8. Case study: Modern environmental assessment method, pollution control in steel plants and coal industries. Lecture: 3

Text Book:
1. Managing Industrial Pollution by SC Bhatia
2. Environmental pollution by HM Dix
3. Chemistry for environmental engineering by SAWYER

02 1x28 HEAT EXCHANGER DESIGN
L-T-P: 3-1-0 Credit: 4
1. Heat exchanger: Types and construction Lecture: 3
2. Heat and fluid flow fundamental general design consideration and approaches. Lecture: 6
3. Computer aided design, cost estimation, optimum design, design of single phase, liquid to liquid, liquid to gas and gas to gas heat exchanges. Lecture: 10
4. Design of steam generators and condensers. Lecture: 4
5. Design of heat exchangers for liquid metal and molten salts. Lecture: 4
6. Design cooling tower. Lecture: 6

Text Book:
1. Process heat transfer by Kern
2. Process heat transfer by Dass
3. Heat exchanger design- Ozsik

02 1x29 FINITE ELEMENT METHOD & APPLICATIONS
L-T-P: 3-1-0 Credits: 4
1. Introduction to finite Elements Methods, general descriptions, concept of finite elements: discretization and interpolation function, steps on finite element analysis’ procedure Lecture: 10
2. Calculus of Variation: Function and functional, euler language equation, Boundary conditions, determinations of functional for plane and axisymmetric elastic problems, Lecture: 10
3. Finite elements: One, two and three dimensional elements, axisymmetric elements: generalize local and natural co-ordinate systems, isotropic, Interpolation function, field variable model for displacement and temperature, Direct, Variational and Galerikan Methods. Lecture: 10
4. Equation of single elements and solutions, Application to plane and axisymmetric elastic problems, heat conduction, plates and shells problems. Lecture: 12
Text Book: As Recommended in class

02 1x30 COMPUTER AIDED DESIGN & MANUFACTURING

L-T-P: 3-0-3

1. **Introduction** concept of CAD/CAM
 Lecture: 4

2. **Computer system**, Hardware in computer – Aided Design system, Product cycle Automation, part programming.
 Lecture: 6

3. **Computer aided design system software**, Transformation, geometric modeling, Drafting applications,
 Lecture: 8

4. **CAD/CAM technology** to finite element data preparation, concept of data structures-
 Lecture: 6

5. **NC, CNC, DNC programming.**
 Lecture: 9

6. **Introduction to AVG.**
 Lecture: 9

Text Books: As recommended in class

02 1x31 QUALITY ASSURANCE & RELIABILITY

L-T-P: 3-1-0

1. **Probability and statistics** concept and application.
 Lecture: 5

2. **Production tolerance**, tolerance analysis and allocation process capability.
 Lecture: 10

3. **Statistical process control**: Economics of quality control, acceptance sampling, Plans and selection. Taguchi technique, Product reliability, reliability achievement, reliability evaluation, system assessment.
 Lecture: 22

4. **Quality circles ISO** : quality awards-
 Lectures: 5

Text Books:
1. Industrial Engg. And mngt by Dr. OP Khanna
2. Total quality management by S Raju SM
3. Industrial Engg. by AP Verma

02 1x32 ROBOTICS AND ROBOT APPLICATIONS

L-T-P: 3-1-0

1. **History of development of industrial robots**, fields of application and future scope.
 Lecture: 7

2. **Anatomy and structural design of robots**, manipulation, arm geometry, drives and control(Hardware) for motions End effectors and grippers, pickups etc.
 Lecture: 7

3. **Matching robots to the working place and conditions**: interlock and sequence control.
 Lecture: 7

4. **Reliability maintenance and safety of robotic systems.**
 Lecture: 4

5. **Application studies in manufacturing processes**, e.g. casting, welding, painting, machine tools, machining, heat treatment and nuclear power stations etc.
 Lecture: 10

 Lecture: 7

Text Book: As recommended in class.

02 1x33 MANUFACTURING PROCESS - I

L-T-P: 3-0-0

1. **CASTING (Foundry)**: Principles of pattern making, allowances in pattern and core boxes, sand mould casting, constituents and properties of moulding sand and their tests, types of sand moulds, methods and principles of gating, risering, use of cores and chills, cleaning of castings defects in castings and their remedies, sand mould machines, melting and casting practices relating to cast iron, steel, aluminium and its alloys, copper and its alloys. Cupla, crucible and electric furnaces, metal mould casting, gravity casting die casting, centrifugal casting, Non-metallic mould casting- shell mould casting. Investment casting, Plasters of paris mould casting.
 Lecture: 12

2. **Mechanical working of Metals**: Hot and cold working of metals, their comparison and limitation. Hot working Processes. Rolling, spinning, Roll Forming, cold heading, Thread Rolling, Tube and wire drawing, coining, Embossing, Tube Rolling.
 Lecture: 12
 Lecture: 6

 Lecture: 12

Text Book: As referred by Teacher.

02 1x34 **MANUFACTURING PROCESS – II**

L-T-P: 3-0-3
Credit: 5

 Machine Tools:
 b. Shaper, slotted, planer, operation, drive.
 c. Milling, Milling cutter, up & down milling, dividing head indexing, Max chip thickness, power required.
 d. Drilling and boring, Drilling, boring, reaming tools, Geometry of twist drill.
 e. Grinding, Grinding wheel, Abrasive, cutting action, grinding wheel specification, Grinding wheel wear, alterations, wear, fracture wear, dressing and truing. Max chip thickness and guest criteria. Flat and cylindrical grinding. Centreless grinding.
 f. Super finishing, Honing, Lapping, Polishing.
 Lecture: 16

2. **Non-conventional Machining process**: Benefits, application and survey of non-conventional machining process, Mechanics of metal removed, tooling and equipments, process parameters, working & applications of AJM, USM, EDM, ECM, ECG, EBM, LBM, PAM and chemical milling etc.
 Lecture: 12

3. **Metrology**: Tolerance and limit systems, limit gauges, Measurement of surface roughness, Inspection of gears and screw threads, Individual and commutative error measurement.
 Lecture: 8

4. **Jigs and Fixtures**: Locating elements, clamping devices, principles of jigs and fixtures design.
 Lecture: 6

02 1x35 **SEMINAR**

02 1x36 **MINOR PROJECT**

02 1x37 **INDUSTRIAL TRAINING**

02 1x38 **CONTROL & MEASUREMENT**

L-T-P: 3-0-3
Credit: 5

1. **Introduction concept of automatic controls** open loop and closed loop system- servomechanism block diagram transfer functions.
 Lecture: 6

2. **Representations of control component** and systems translational and rotational mechanical components electrical components. Series and parallel combinations comparator for rotational and linear motions integrating devices hydraulic servomotor temperature control, system response speed control system.
 Lecture: 6

3. **System response first and second order systems** response to step pulse ramp and sinusoidal input system with distance velocity lag.
 Lecture: 6

4. **Pressure use of monometers Bourdon gauge**, bellows type gauge, measurements of vacuum and pressure transducer, static and dynamics, response of pressure measuring instruments.
 Lecture: 6

 Lecture: 4

Lecture: 6

7. **Strain, use of strain gauge**, static and dynamic response, displacement, velocity, acceleration, Jerk linear and angular, piezoelectric pick /ups . inductive type pic/up. Force, torque, time, frequency and phase angle, use of CRO. Electronic counters. Density and viscosity of gauges and liquids, Calorific value of solid, liquid and gaseous fuels, noise, humidity flow visualization, demonstration of shadow and schlieren technique, introduction to metrology.

Lecture: 10

Text Book: As referred by teacher:

02 1x39 INDUSTRIAL ENGINEERING & MANAGEMENT

L-T-P : 3-0-3

1. **Material management inventory management**, inventory analysis and control-

Lecture: 5

2. **Work study method study and work**, Measurement, work sampling, synthesis, analytical estimating predetermined motion and time system-

Lecture: 3

3. **Production planning and control Batch size** , buffer stock, man machine chart, production control progressing feedback control charts.

Lecture: 5

4. **Quality management SQC** , analysis of variance, OC CURVE, AOQL, PRODUCERS RISK , CONSUMERS RISK, LDPD Sampling plans ISO 9000 Series.

Lecture: 4

5. **Elementary operation research industrial safety and pollution control** :

- LPP graphical and simplex method, duality, TP and AP, queuing theory (single channel)

Lecture: 8

- Project management, CPM&PERT for small scale industry industry feasibility study, preparation of project report.

Lecture: 4

- Industrial safety – accidents, causes and costs, accident prevention , protective equipments

Lecture: 5

- Pollution control, air, water and land pollution, noise pollution, preventive,

Lecture: 5

Text Book :

1. Industrial Engineering by AP Verma
2. Industrial Engineering & Management by Dr. OP Khanna
3. Industrial Engg, & Mgt by Dr. Ravi Shankar

02 1x40 PROJECT

L-T-P : 0-0-15

Credit: 10
DEPARTMENT OF LEATHER TECHNOLOGY

07 1301 Theory & Practices of Preservation and Pre-Tanning Operations

Preservation of Hides and Skins:
Principles and practice involved in long and short term preservation techniques for hides and skin, Preservation, defects.

Lecture - 5

Pertaining Processes:

Soaking :- Physico-chemical explanation of wetting, objectives materials, methods and different controls in soaking operation.

Lecture -4

Liming :- Chemistry of Unhairing, Unhairing by different methods, Objectives of liming, Effects of liming in collagen, controls in liming operation to achieve different physical properties of leather.

Lecture- 6

Deliming and Drenching :- Objectives, Principles and controls of deliming and drenching.

Lecture- 3

Bating :- Chemistry of proteolytic enzymes used for bating, Necessity of bating, its necessity and controls for desired properties of leather.

Lecture- 5

Pickling :- Acid binding capacity of collagen, use of organic acids or salts in pickling, its necessity and controls, concept of De-pickling.

Lecture- 4

Degreasing :- Objectives and necessity of Degreasing, different degreasing systems and methods.

Lecture- 3

CLEANER PROCESSING PRACTICES IN BEAM HOUSE
Salt free curing option, Sulfide free unhairing system, ammonia free deliming, salt free pickling system, eco friendly degreasing system, strategies to bring down BOD, COD and TDS of tannery effluents.

Lecture 10

Suggested Books :-

07 1x02 Introduction to Leather Technology

Live stock population, animal mortality and availability of hides and skins in India. 05
Statistical analysis of leather Industries, Leather, Leather products (National & International Scenario). 12

Chemical constituents of hides and skins. 05

General principles involved in raw hide and skin preservation, assortment and their processing, pre tanning, tanning and post tanning operations. 15

Defects in leather, Microscopy & Bacteriology 05

07 1x03 Bio-Chemistry of Proteins
Fundamentals of Biochemistry :-
The molecular logic of life, strong and weak interactions, introductory concept of cell, bio-molecules and water.

Histology and fiber packing in commercially viable hides/skins. 3

Amino acids, peptides and proteins :-
Chemistry, Classification determination of amino acids, Qualitative and Quantitative determinations, Structure of Various amino acids, formation of peptides, polypeptides and separation of proteins, covalent structure of proteins, Reaction of Proteins with acid, bases and salts. 8
Polarity of amino acids and ionization of proteins, electro-phoresis, hydration, solubility of proteins, dielectric properties, intermolecular forces of proteins cross linking in collagen, Iso-electric point of collagen and its manipulation in various stages of leather manufacture. Acid and base binding capacity of collagen, reversible and irreversible acid and base binding capacity of collagen, Effects of anions, swelling (osmotic and lyotropic) and phase transition in collagen, helix-coil transition, Denaturation and melting of collagen. Glass transition of collagen, Shrinkage denaturation and optical birefringence of collagen. 12
Structure, function and chemical features of collagen reactive groups and Cross linking, Tropo collagen molecules, Sub-units of collagen, Types of collagen, Structure and function, Fibril formation, Precipitated forms of collagen, Electron microscopy of the collagen fibre, Bio-Synthesis. 9
Structure and functional role of other skin proteins like keratin, Reticelin and Elastic, albumin, globulin and mucine etc. 6

071x04 CHEMICAL ENGINEERING –I
1. Fluid Mechanics :- Properties of fluids, Compressible, Incompressible fluid, Viscosity, Elasticity, Vapour pressure, Surface tension, Buoyancy and floatation. 10
2. Flow Measurement :- Pitot tube, Venturi meter, Orifice meter, Pumps, Manometers. 08
3. Fluid Dynamics :- Bernoulli’s theorem, Continuity equation, Euler’s equation, Energy and momentum equation, Basic concept of Newtonian and Non-Newtonian fluid. 08
4. Heat transfer :- Heat transfer by conduction, convection and radiation, Conduction through plain and cylindrical surfaces, Natural and forced convection, Heat transfer coefficient. Log mean temp. difference. 09
5. Evaporation :- Types of Evaporators, Operation of Evaporation unit, Different methods of feedings. 04
6. Size Separation :- Screening, Mixing and agitation, floatation, 04

Practical :-
1. To verify Bernoulli’s theorem.
2. Study and calibration of venturimeter.
3. Study of pilot tube and to measure discharge through it.
4. Study of orifice meter and determination of Cv, Cd, Cc for free flow.
5. To study and draw various flow pattern of a fluid past body.
6. To find the metacentric height of a body.
1. Nitration, Alkylation, Halogenation, Sulfonation.

2. **Crystallization** - Theory of crystallization, crystallization equipment for chemical processing.

4. **Diffusion** - Binary diffusion Concept of mass transfer coefficients and interface mass transfer and stage wise contact.

Practical:

1. To find out the Viscosity of a given fluid by ostwald Viscometer and by capillary tube viscometer.
2. To study about bomb calorimeter.
3. To find the calorific value of a given solid fuel.
4. To separate the mixture of Benzene and Toluene by simple distillation method.
5. Screen analysis by Taylor’s method.

07 1x06 Principles of Inorganic Tannage

Tanning - Theory, Chemistry, Factors and objectives of following inorganic tanning operations:

- (a) Chrome Tannage
- (b) Aluminum Tannage
- (c) Iron Tannage
- (d) Zirconium Tannage
- (e) Titanium Tannage
- (f) Poly Phosphate Tannage
- (g) Silica Tannage.

Introduction to Co-ordination Chemistry, metal ion in tanning -

Historical introduction to mineral tanning, Introduction of factors controlling molecular stability of transition metal complexes, Werner’s theory of Co-ordination, Role of d and f orbitals, Definition of ligands, Ligand Bond in Collage, Chelation, Masking agent - Their requirement for use in chrome tanning, Effect of masking on chrome tanned leather & as chrome liquor.

Aqueous Chemistry of Chromium -

Electric configuration, common oxidation states of chromium, stabilities of Chromium (IV) and Chromium (III) salt, Basicity, Olation, Oxolation and polymerization, complexity of chrome complexes.

Factor Controlling Chrome tanning -

Single and double bath chrome tannage and their relative merits and demerits, preparation of Basic chromium sulphate salt, Effects of float Volume, PH, basicity, Masking temperature, drum speed, ageing chrome tanned substrate.

Mechanism of chrome tanning -

Theories of chrome tanning, Absorption, Coating, Electrostatic and hydrogen bond interaction and co-ordinative forces involved in chrome tanning, hydro thermal stability of chrome-collagen compound.

Suggested Books - Same as 07 1x02
07 1x07 Principles of Organic Tannage

Vegetable Tannins –

Synthetic tannins –
Chemistry & Multifunctional properties of syntans, Nontans in synthetic tannins, General Manufacturing methods of Phenol, Formaldehyde Naphthalene, Formaldehyde and Naphthol, Formaldehyde condensates, Supra Syntans, Use of Syntans for the Manufacture of various Leathers & for chemical modifications for specific objectives, use of Lignosulfonic acids in Leather processing.

Resin Syntans –
Urea, Formaldehyde & Melamine, Formaldehyde condensates as tanning agents for leather, their chemistry & structure, Property, Relationship, Polyacrylates & Polyurethanes as Resin tanning agent Principles of their use.

Aldehydes as tannins –
Formaldehyde and other mono, difunctional aldehydes their chemistry, Structure and general properties, Reaction of aldehydes with different functional groups of protein. Tanning faculty at different pH reactions, oil, sulphony/chloride quinone tannage.

Combination tannages –
Deficiencies of single tannage, Machanistic classification of tannages. All chrome based combination tannages, semi-chrome & semi – alum tannages

07 1x08 Practices of Leather Manufacturing – I

General Practices in vegetable and chrome tanning with quality control in manufacture of the following Industrial and heavy leathers.

Traditional and Rapid methods of vegetable tannage of sole (Pit and Drum tanning). Chrome tanned sole and waxed chromed soles. Improvement of water resistance of vegetable tanned sole leathers.

Bag tanning of cattle and buffalo hides, different types of finished leather from bag tanned leathers, Belting harness, Saddlery and honing leathers.

Picking band leathers, Apron leathers, Hydraulic pneumatic leathers such as water and air pump leathers for turbines, Oil seals, Gas meters etc.

Sports goods leathers like Foot ball, Hokey ball, Volley ball, Cricket ball, Glove for wicket keepers and Boxing. Taxidermy.

Manufacture of Kattai, Banwar and case hides from Buff cattles.
07 1x09 Analytical Chemistry of Leather

1. Analysis of Lime
Principles underlying determination of following in lime
(a) Available lime
(b) Total based by titration method
(c) Iron by colorimetric method

2. Analysis of Na₂S
Principles underlying analysis of Na₂S by official international method.

3. Analysis of lime liquors (Fresh & used)
Principles underlying determination of following in line liquor :
(a) Total Alkalinity
(b) Total lime
(c) Total nitrogen
(d) Hide substance
(e) Amino acids

4. Analysis of limed pelt
Principles underlying determination of following in limed pelt
(a) Total Alkalinity
(b) Total Ammonia
(c) Hide Substance

5. Analysis of Boric acid

6. Analysis of deliming agent (Ammonium chloride and Ammonium sulfate)

7. Analysis of enzyme bates

8. Analysis of used pickle liquors for following :
(a) Determination of acid
(b) Determination of salt

9. Analysis of Sodium formate

10. Analysis of Chrome liquor to determine
(a) Basic chromium
(b) Basicity of chrome liquor
(c) Degree of Olation.

11. Analysis of basic chromium sulfate for following :
(Power of Crystal)
(a) Moisture
(b) Chromium

12. Analysis of acids & salts in vegetable tannin extracts by different methods.

15. Analysis of chrome tanned leather for following:
 - Moisture, ash, Chromic oxide content, Solvent extractable substances, Water soluble matter and difference figure.

16. Analysis of followings of Veg. tanned leather:
 - Moisture, ash, Water soluble matter, Solvent extractable substances and difference figure, Degree of tannage.

17. Analysis of followings of Alum. Tanned leather:
 - Moisture, total ash, Solvent extractable substances, Aluminium as Alumina.

18. Analysis of followings of Zirconium tanned leather:
 - Moisture, Ash, Solvent extractable substances, Zirconium content.

19. Analysis of followings of combined tanned leather:
 - Moisture, Ash, Solvent Extractable substances, Water soluble matter and difference figure, Chromic oxide content, Degree of tannage.

20. Analytical Chemistry of Post tanning and Finishing agent
 Analysis of lipids for following:
 (a) Acid value
 (b) Saponification value by reflux method.
 (c) Iodine value by Hanus method.
 (d) Unsaponifiables by extraction method.
 (e) Analysis of sulfated oils and ready made fat liquors.

21. Principles underlying examination and analysis of dyes used in leather manufacture

22. Principles underlying examination and analysis of readymade finishes and finishing materials used in leather manufacture.

Suggested Books:
4. Different standards issued by BIS from time to time.

07 1x10 Principles of Post-Tanning Operation

NEUTRALISATION: Its objectives, necessities and control to achieve desired uptake of dyes and fat liquors.

BLEACHING: Definition, Theory, Mechanism of chemical bleaching, classification and application of different methods of bleaching to leathers.
03

DYING :- Classification of dyes based on their chemical nature and also according to their application, Theory of colour, Manual colour matching, Theory and mechanism of dyeing, Chemistry and application of dyeing auxiliaries such as levelling agents, wetting agents, dispersing agents and dye fixative, Metal complex dye.

10

FAT LIQUORING :- Theory of stability of Emulsion (Surface tension theories and Electrical theories), Fatliquor based on natural oils, their chemistry and preparation, Oxidation, Sulphation, Sulphonation, Bisulphitation and their properties, Synthetic Fat liquor :- Preparation and Properties, Principles and objectives of fatliquoring, Differences between synthetic and natural fat & oils concept of curring.

10

RETANNING SYNTANS AND RETANNING :- Classification of retanning syntans, Tanning power of retanning syntan, Dipole theory of syntan tanning, General method of manufacture of aromatic syntans their general properties, Objective of retanage, Effect of different retanning agents on properties of leather principle of bondage of retanning material.

07

THEORY OF LEATHER DRYING :- principles of energy and mass transfer, Physio-Chemical aspect of leather drying, Different methods of drying followed in leather Industry

07

Suggested Books :- Same as 07 1x02

07 1x11 Leather Bio-Technology

Microbiology (Bacteria) :-
Morphology & fine structure of bacteria :- The size shape & arrangement of bacterial cells, Bacterial structures, Structure external to the cell wall, Flagella and motility, pili, capsules, sheaths & stalks.
The Cultivation reproduction & Growth :- Nutritional requirement, nutritional types of bacteria, Prototroph Chemotrophs autotrophs & hetrotophs, obligate parasites.

10

Bacteriological media :- Types of media, preparation of media, Physical conditions required for growth.

02

Reproduction :- Modes of cell division, new cell formation .

02

Methods of isolating pure culture :- The streak plate technique, the power plate and spread techniques, micro manipulator techniques, the maintenance and preservation of pure culture, culture collection cultural characteristics colony characteristics, Characteristics of broth culture.
Characteristics, Classification of mold, Role of bacteria and mold in leather, uses of Bactericides and Fungicides in leather.

05

Enzyme, their Physico-chemical concept regulation of enzyme synthesis in microbes, classification, function methodology, Enzyme reaction mechanism :- Enzyme kinetics isolation and purification of enzymes.
Immobilization of enzymes in whole cell and enzyme reactors.

02
Cleaner Leather processing :- use of enzyme option in beam house operations – Soaking, Unhairing, Bating Degreasing, offal treatment, Types of enzymes – Proteases, Lipases, Properties and Production.

Fermentation :- Mechanism of alcoholic fermentation of carbohydrate, bacterial fermentation, fermentation by coliform organisms, fermentation of nitrogenous compound, vinegar.

Bacterial Genetics :- Biosynthesis of deoxyribonucleic acid (DNA)- Structure of DNA, Biosynthesis of nucleotides in DNA strands, Replication of the DNA molecule, Transcription & translation of genetic information in protein synthesis. Bacterial mutation :- Types of mutation, How mutation occur, How mutation are repaired, Bacterial recombination, Bacterial conjugation, Bacterial transduction, Bacterial transformation, Recombiant DNA Technology, DNA Cloning.

Lisation of collagenous tissues for Biomedical and other application :- Collagen and its application in food, cosmetic and medical fields.

Suggested Books :-

1x12 Leather Product Technology – I

1. Introduction
History of Footwear industry, Functions of footwear, Different parts of Footwear (Upper, Bottom and hidden components)

2. Anatomy of Human foot
Bones, Joints, Muscles, Ligaments, arches of skin of human foot, Internal and external changes of human foot from infant to adult stage, Analysis of human locomotion, Common foot abnormalities and their remedies. Foot comfort and foot care.

3. Last
Definition, Classification of last, Different parts of last, Seasoning of wood for wooden last, Last measurement, Comparison of last with human foot.

4. Shoe Sizes and Fittings
Relation between foot sizes and fittings and shoe, sizes and fittings, English, American, French, Continental and monopoint shoe sizes and fittings system.

5. Designing
Introduction, Classification of Basic design, Elements of Design, Elements of Fashion design procedure, Concept of inside form, outside form and mean form, Making a basic shoe standard, pattern making allowances, Grading (Grading m/c)

6. Footwear materials
(a) Upper and Lining materials – Different natural and synthetic materials.
(b) Adhesive – Definition, Different types of adhesives use in footwear industry and their relative advantages and disadvantages.
(c) Sole, Insole, Toe, PUA, Shonic, Stiffner, Itec, Thread, Required properties of these materials, Different types of these materials.

7. Footwear Costing
Material, Labour and Overhead cost, Determining the material consumption, Leather consumption – One pair tracing insole consumption, Adhesive and thread consumption etc.

Suggested Books :-
1. Manual of Shoe making – Clark

07 1x13 Principles of Material Testing

1. Introduction
Thumb tests, Necessity of Physical Testing, Classification, Sampling positions, Conditioning of test samples

2. Different Strengths of Leather
Determination of Tensile strength and percent elongation of break, Stitch tear strength, Tearing strength, Tongue tearing strength, Buckle tear strength, Split tear strength, Distension and strength of grain by Boll Burst test – (i) The Lastometer (ii) The Tensometer.

3. Few more tests for upper and light leather
Flexing endurance test, air and water vapour permeability, Dynamic water proofness test, Dry and wet rub fastness test, Measurement of shrinkage temperature.

4. Tests for Sole leather
Measurement of apparent and real density, Determination of Abrasive resistance of sole leather, Dynamic water proofness of sole leather (Kubelka method), Grain cracking in sole leather (Mandrel test)

5. Tests for Finish -film
Determination of bond strength between the leather surface and finish film, cold, crack resistance, Light fasters test.
6. Specification
Shoe upper, Sole, Lining Leather, Clothing, Glove, Technical leathers, Upholestry and fancy leather.

Suggested Books :-
1. An Introduction to the principles of physical testing of leather – Prof. S. S. Dutta, ILTA, Kolkata.
2. Technical Controls in Leather Manufacture – By Bangau Swami, CLRI.
3. The Chemistry and Technology of Leather – O’ Flaherty, Roddy, Lollar, Robert E, Kvieger Publishin Co. N.Y.

07-1x14 CHEMICAL ENGINEERING - III

2. Filtration :- Theory and Mechanism of filtration, continuous and batch type filtration equipment.

3. Drying :- Drying characteristics of material, Theory and Mechanism of drying, estimation of drying rate. Type of dryers.

4. Extraction:- Extraction, Types of extraction, liquid-liquid extraction liquid-solid extraction, operation of stagewise and differential contact extractors.

5. Chemical Process :- Manufacture of Bleaching powder, Alkali Industries Sodium sulfide, Sodium dichromate Basic Chromium sulphate.

07 1x15 Leather Finishing Materials and Auxiliaries

1. Pigments :-

2. Principles of Finishing, Finish Formulation and their Application:-
Definition, Aim, Film- Formalation mechanism, Properties of films such as transparency, Gloss and resistance to heat, light and solvent, Role is dispersion and stability – Requirement in multiple coat technique- Single coat, Composition and methods of application like spraying, Curtain coating, Roller coating etc, Cationic finishes and their relative merits

3. Chemistry and Preparation of Nitrocellulose, lacquers, lacuuer emulsion, Coloured lacquers, Wax emulsions, Silicone emulsion.

5. Chemistry and Mechanism of Plasticization, Internal and External Plasticizers.

7. Upgradation technologies in finishing.
General introduction to addition, condensation, Natural polymer, Caesin, Cellulose

Suggested Books :-

07 1x16 ELECTIVE – I
(One Elective paper will be taken up out of the following four options with the consultation of H.O.D)

07 1x16 Animals & Tannery Byproducts Utilization (LTE 1.1)
1. An Overview :- Types of tannery available in India. Their nature and composition. Present methods of collection and utilization. Recovery of salt from the same. Its treatment and re-use. Theoretical and practical aspects of recovery of chrome, Protein and biogas from the tannery waste.
2. Beam-house Products :- Recovery of fat, proteins, chemicals and glue and their use. Pet Treats, finished split, gloves, washers etc.
3. Leather shavings and Trimmings :- Chemistry and Processing into hydrolysates, glue gelatin, syntans, fertilizers, processing into leather and acoustic boards.
4. Nature of Tannery Hair :- Chemistry and processing into protein meal hydrolysates and their uses – Conversion into felts and other utility products.
5. Process Studies :: Glue and protein meal from tannery fleshing, Quality evaluation of glue and protein meal, pet treats limited stock recovery of salt from used salt – Analytical procedures of protein meals.

07 1x16 Polymer Science and Technology(LTE 1.2)
3. Radical Chain polymerisation: Mechanism of venyl polymerisation, kinetics of chain growth polymerisation, molecular weight and its distribution,
8. Measurement of Molecular Weight and Size: End group analysis, colligative properties measurement.

Suggested Books:
07 1x16 Co-ordination Chemistry. (LTE 1.3)

General characteristics of d block elements, Metallic character, Colour, Magnetic properties, Double salts, Tendency to form complexes, Coordination compounds, Coordination complexes and complex ions, Isomerism coordination number, important ligands, chelating ligands and chelates, 12

Postulates of werner’s co-ordination theory, to explain the different oxidation states of Cr, Al, Zr, Pt, Ti, P As, Sb, Bi, Co etc. Explain the structure of Cr, Al, and Zr Ammines on the basis of Werner’s Coordination theory, Experimental evidence in favour of Werner’s theory, complex co-ordination, Molecular orbital and ligand field theories, Sidgwick’s electronic concept of Co-ordination bond, limitations of sidgwick’s electronic concept of Co-ordination bond, sidgwick’s effective atomic number (EAN) Rule, Calculation of EAN of the central Metal atom in complex ions, Application of EAN Rule, Some typical Problems with Solutions, Metallurgy of Cr, Ti, Al, V, Co, Mn, Mo and Zr. 24

Chemistry of chromium salts and chrome tanning, factors affecting the formation and stability of different complexes like Al, Cr, Zr etc. 4

07 1x16 Organic Chemistry (LTE 1.4)

1. Carbohydrates :-
 Introduction – Mono and Diaccharides, Trisaccharides, Polysaccharides, Strach and Cellulose, Derivatives of cellulose, Carboxy Methyl cellulose, Structural aspects of cellulose and starch.

2. Amino acids and Proteins :-
 Classification of Proteins, Test of Proteins, Denaturation, Structural aspects of wool.

3. Oils, Fats and Waxes :-

4. Dyes and Dyeing :-
 Chemical classification of dyes, Synthesis of some important dyes, Synthesis of triphenyl methane dyes, Anthraquinone dyes, Phthalein dyes, Introduction to Natural and reactive dyes, Metal complex dyes.

5. Reaction of mechanism :-
 Homolytic bond fission, free radicals, heterolytic bond fission, electrophiles, Carbonium ion, Nucleophiles, Acids and bases, Bronsted lowry concept lewis concept, Strength of acids and bases, substitutions reactions – S_N1, S_N2, S_Ni, Addition reactions, Elimination reactions, condensation, redox reactions.

07 1x17 Practices of Leather Manufacturing – II

Manufacture of different types of wet blue/wet white from raw Cow/Goat/Sheep/Buffalo hides/skins.
Modern practices in E.I. tanning, E.I. Kips and their dressing into upper, lining and leather for goods.

Semi chrome/Full chrome/Chrome retain hunting suede, Safety uppers burnishable upper leathers from cattle hides. Printed and shrunken grain leathers, Chrome tanned Buff uppers, Upholdstry and printed leathers. Vegetable and chrome tanned lining leathers.

Morocco leathers, Chamois leathers, book binding leathers and pleated leathers.

07 1x18 Theory of Leather supplements & Synthetics

1. Chemistry of the most common Polymeric materials used in leather industry as supplements. 04
2. Concept of a macromolecule, natural & synthetics polymer, modes of polymerization, radical, condensation, stereo regular polymerization, polymerization kinetics, mechanism, anionic and cationic polymerization. 10
3. Manufacture of industrially important polymer for plastics, fibres and elastomer, polyethylene, polypropylene, polyvinyl, chloride, polyvinyl, alcohol, polyacrylonitrile, polyurethane, fluoro – carbon polymer, epoxy resins, polyanamides, polyesters, alkyd resin, silicon polymers, cellulosics, polyacrylates, polyurethanes and their common applications. 12
4. Testing of Polymers, Mechanical and thermal testing. 04
5. Polymer and Rubber industries in India. 04
6. Manufacture of Rubber and Synthetic rubber, Natural rubber processing and vulcanizing synthetic elastomers, butadiene copolymer, Polyisoprene, Polybutadiene, Thermosetting, Thermoplastic. 10

07 1x19 Instrumentation & Process control

AIM
To know the principle and importance of various analytical instruments used for the characterization of various materials. 2

OBJECTIVES
To have thorough understanding of theory, instrumentation and applications of analytical equipments used in Industries for testing quality of raw materials, intermediates and finished products.

Introduction to spectroscopical methods of Analysis
Electromagnetic Radiation :- Various ranges, Dual properties, Various energy levels, Interaction of photons with matter, absorbance & transmittance and their relationship, Permitted energy levels for the electrons of an atom and simple molecules, Classification of instrumental methods based on physical properties.
Quantitative Spectroscopy :- Beer-Lambert’s law, Limitations, Deviations (Real, Chemical, Instrumental), Estimation of inorganic ions such as Fe, Ni and estimation of Nitrate using Beer-Lambert’s Law.

UV – Vis Spectrophotometry :- Determination of spectra of some known organic compounds and identification of molecular transitions and functional groups in single beam spectrophotometer, quantitative estimation of various compounds in single beam spectrophotometers, estimation of Cr^{6+}, Fe^{3+}, NO_3^-, PO_4^{3-}, COD in spectrophotometer.

Atomic Absorption Spectrophotometry :- Determination of some heavy metal concentrations (like total Cr, Fe, Zn, Pb, Zr etc.) from solution, leather, effluent, soil/sludge, plant and fish tissues.

IR, RAMAN AND ATOMIC SPECTROSCOPY :-
Theory of IR spectroscopy, Various stretching and vibration modes for diatomic and triatomic molecules both linear and nonlinear), various ranges of IR (Near, Mid, Finger print and Far) and their usefulness, Instrumentation (Only the sources and detectors used in different regions), sample preparation techniques, Applications.

Raman spectroscopy : Theory, Differences Between IR and Raman.

Raman spectroscopy : Principle, Instrumentation (Types of burners, Types of fuels, Hollow cathode lamp, Chopper only) and Applications, various interferences observed in AAS (Chemical, radiation and excitation).

Flame Photometry :- Principle, Instrumentation, quantitative analysis (Standard addition method and internal standard method) and applications.

CHROMATOGRAPHIC METHODS :-
Classification of chromatographic methods, Column, Thin layer, Paper, Gas, High Performance Liquid Chromatographical methods (Principle, mode of separation and Technique). Separation of organic compounds by column and Thin layer, mixture of Cu, Co and Ni by Paper, separation of amino acids by paper, estimation of organic compounds by GC and HPLC.

Controls in leather processing :-
Concept continuous processes, material and energy optimization, conventional and computer assisted control strategies, case studies.
07 1x20 Leather Product Technology – II

1. Clicking
Characteristics and variations in leather, Material selection, Clicking of upper linings, Socks and fabrics.

2. Preparation (Pre – Closing)
(a) Identification making, stitch making, Punching, Perforating and embossing.
(b) Skiving – Objectives, different types skiving.
(c) Reinforcements.
(d) Topline and edge treatments.

3. Closing operations
(a) Stitching – Types of stitching m/c, Types of stitch, Different types of seam.
(b) Eyeleting, lasting, etc

4. Construction
Assembly, Definition of construction, Types of Construction, Flowchart of different construction., Details of cemented construction – Methods,

5. Treeing Department (Shoe-room operations)
Shoe-room operations for grain, leather and suede leather uppers.

6. Quality control in footwear industry, Marketing of footwear, Hand tools and fittings for footwear industry.

Suggested Books :-

07 1x21 ELECTIVE – II
(One Elective paper will be taken up out of the following four options with the consultation of H.O.D)

07 1x21 Fashion styling and Computer added design of leather product (LTE 2.5)

International Fashion Trends :
Historical evolution of footwear and garment styling, seasonal, cultural and geographical influences on foot wear and leather garments fashion, trends in fashion, concepts, colour and human psychology.

Colour characteristics :
Primary colours and colour scheming for aesthetics, colour blending and techniques for colour matching.

Decorative styling Techniques :
Decorative components, decorative techniques like batik, stitching, punching, printing, embossing, knitting etc.
CAD of Leather Product:
Introduction to general CAD, Input and output devices required for CAD and their working principles. Capabilities of CAD for styling purpose- colour, basic primitives etc. Design methods using CAD for leather products, Pattern assessment methods for inter locking and economic cutting.

Introduction to CAM:
Tools required in CAM, Possible application of CAM in leather products, Introduction of the commercial CAM systems for leather products.

07 1x21 Advance Leather Process Technology (LTE 2.6)

Anatomical structures of hides and skins, Retanning, dyeing and fat liquoring in light and heavy leathers composition of finishes, formulation and application of Leather auxiliaries like protein and resin binders, pigments, wax emulsions, lacquer and lacquer emulsions coloured lacquers, silicones and slip agents, pretanning and neutralizing syntans etc. in manufacture of above leathers.

Function of different finishing ingredients – Newer approaches in finishing, problems encountered in finishing and their solutions.

Novel finishing techniques:
Role of newer equipments like auto spray, roller coats, continous embossing machines, finiflex etc., Methods such as oil-pull-up, Waxy burnishable, antique, grain sueded, screen printing, roller coating, pearl finishing easy care and patent finishing.

Light leathers from heavy hides and skins:
Resin upper, glazed uppers, lining leathers shoe-suedes, garment suedes- sheep nappa, glove leathers, E.I.- Wet-blue, wet – white, etc – details of processing techniques split processing for shoe suede, garment sued, grain finished and specialty finishes.

Upgradation through processing technologies and finishing techniques specially suited for the purpose like selection and use of retannage systems, Embossing-special effects by screen and block printing, roller coating, gravure printing, Tie and Dye leather.

07 1x21 Applied Statistics and Quality Control (LTE 2.7)

Definition of Probability and Related basic concept:
Discrete and continuous probability distributions (Binomial, Poisson, uniform, normal, Gamma and exponential), Basic concept of statistical population and sampling, Sampling design, random sampling, Mean variance and co-variance, correlation coefficient, Moments. Basic concepts of testing of hypothesis, Analysis of variance and Co-variance.

Basic concept of statistical Quality control (S & C):
Development of various quality control and quality assurance concepts, Concept of product quality, Concept of quality control system, Nature of control limits, purposes of control charts, control charts for variables, control charts for attributes, cusum control chart.

Application of computers to quality systems.
Introduction to ISO 9000 and TQM:
ISO 9000 genesis, advantages, documentation, procedures. ISO 9000 VS classical quality control concepts.
System evaluation, system development, system implementation, and maintenance, ISO 9000 and ISO 14000 standards

07 1x21 Surface and colloid chemistry (LTE 2.8)
Colloidal State:
Introduction to colloidal state, Distinction among true solutions, colloids. Suspensions classification of colloids based on (physical state, Nature of interaction, Type of particles) Study of different phases (micellar, liquid crystalline and microemulsions) as well as aggregates such as vesicles. Purification of colloidal solutions, General physical properties of Colloidal solutions (colligative, Mechanical and electrical properties of colloidal solutions), Protective colloids and Gold number.

Application of colloids, stability of emulsions, electrophoresis, dialysis, coagulation and flocculation and their characteristics summary of surface chemistry.

Adsorption Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids – Freudlich and Langmuir adsorption, Isotherms, Adsorption from solutions.

07 1x22 ELECTIVE – III
(One Elective paper will be taken up out of the following four options with the consultation of H.O.D)

07 1x22 Computer application for Leather Technology(LTE 3.9)

1. Computer Programming Languages Operating System :: An overview of operating systems – DOS, UNIX, OS/2, MS-WINDOWS Review of Programming Languages – Basic, C & Fortran.
2. Data Processing :: Introduction to spread sheets, Analysis of data, Graphical representation.
4. Database and its Application :: Basic structures Retrieval of data for Reports, query and other formats and their export to other applications.

07 1x22 Profession Ethics (LTE 3.10)

2. Engineering as social experimentation :: Engineering as experimentation – engineers as responsible experimenters-codes of ethics-a balanced outlook on law-the challenger case study.

5. **Global issues** :- Multination corporations – environmental ethics - computer ethics - weapons development engineers as managers - consulting engineers as expert witnesses and advisors - moral leadership - sample code of conduct.

07 1x22 Entrepreneurship (LTE 3.11)

1. **Introduction** :
Productivity in India, Resources, Availability and mobilization, Land Labour and capital, Industrial Growth in five year plan period, Human resources development.

2. **Technology and Investment** :
Industrial climate in India, Technological investment, Transfer of Technology, Factors influencing technical investment, NRI, Capital market in India.

3. **Technocrats** :
Development of Technocrats, Role of educational institutions, Psychology of India technocrats, Technocrats as entrepreneur, Characteristics of an entrepreneur.

4. **Leadership** :
Attitudes and aptitudes, Qualities and development, Risk taking and decision making, Personal involvement.

5. **Value Engineering Techniques** :
Value added products, Value adding techniques, cost reduction techniques, Waste control, Alternate product application, Functional value of the product, Improvement and expansion.

6. **Marketing** :
Indian and International markets, Market surveys, Strategies and development of market, Need based marketing techniques.

7. **Business Laws and Regulations** :

07 1x22 Total Quality Management(LTE 3.12)

1. Introduction
Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs – Analysis Techniques for Quality Costs, Basic Concepts of Total Quality Management, Historical Review, Principles of TQM, Leadership – Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Demin Philosophy, Barriers to TQM Implementation.

2. TQM Principles

3. Statistical Process Control (SPC)
The seven tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools.

4. Total Quality Management Tools

5. Quality System

Suggested Books :-

References :-
Tannery Waste Management

Water Pollution in General Perspectives:
Leather industry attributed for water pollution. Types of water pollution – Physical, Chemical and Biological pollution. Hazardous effects of water pollution on land, Ground water, Surface water, Aquatic life and sea. Ecological system and water pollution.

Tannery Effluent:
Types of tannery effluent, Characteristics of effluent from beam house processes, Tan yard processes and finishing processes their nature and pretreatment before disposal, Most toxic ingredients- Hazards of tannery effluent, Principles involved in removing their toxic effect from tannery effluent, Principles for estimation of TDS, SS, DO, COD, BOD, Sulphides, Chromium and non bio-degradable aromatic substances in waste water.

Primary Treatment:
Main object of primary treatment – Primary treatment units, Collection system of discharged waste water in tanneries, Screening, Equalisation of waste water.

Secondary Treatment:
Principles of secondary treatment – Different processes involved in secondary treatment system, Lagoon treatment, Aeration Treatment, Trikling filter, Systematic design of these systems. Lecture-05

Tertiary Treatment:
Unit operation in controlling pollutant at tertiary stage.

Standards and Specifications:
Indian standards, International standards specifications for Industrial effluent discharge, Types of effluent disposal.

Recovery of Waste Water and Materials:
Different processes in recovery and reuse of waste water & material in tanning industry, Economic feasibility of different processes.

Suggested Book:
Environmental & Tannery – M.C.C. Carre et. Al. center technique du cuir, Lyon, France.

Practices of Leather Manufacturing – III
General practices and techniques involved in manufacture of different types of light leathers.

Glove kin, Resin upper, Glazed uppers, Lining leathers, Shoe suedes, Garment Swedes, Grain garment leathers, Gloving leathers.

Sheep nappa, Suede garments, Uppers and safety uppers, Lining and diaphragm leathers.
Nubuck, Oil pull up leathers, Dressing of for skins and processing of reptiles.

Combination tanning, Embossing, Grain correction, Special effects by spray, Screen printing, Roller coating, Gravure printing, tie and dye leathers, imitation leathers.

07 1x25 Leather Product Technology – III

Historical evolution of Garment and Goods styling, Seasonal cultural and geographical influences on fashion, Friends in fashion concept, Colour and human psychology.

Classification of Leather Goods and Garments, Selection of materials, Grading and assortment of Leathers for leather goods and garments. Property requirement for leather and lining materials. Accessories for leather goods and garments comparison between manual and machine cutting, Maintenance of knives and tools, clicking machines mechanical, Hydraulic/Pneumatic pattern interlocking/nesting for material optimization Assembly and sticking (Closing).

Different types of sewing machines (Flat bed, inclined bed, special type machines), Feed mechanisms, Various types of assembly techniques for leather goods and garments.

Pattern Designing

07 1x26 Project Work
A Comprehensive innovative project work will be taken up by individual student or a group of students related to Leather and allied subjects with consultation with H.O.D. or the Teacher concerned. At the end of the semester every students will submit project report for evaluation. There will be two pre-reviews before the final submission of the project report for internal assessment. These reviews will be conducted by A Board of two or three internal examiners (including guide/s)
1. **Matter, Properties of Matter:** State of matter, change in the state of matter, latent heats and vapor pressure, sublimation-critical point, Eutectic mixtures, gases, aerosols-inhalers, relative humidity, liquid, complexes, liquid crystals, glassy state, solids-crystalline, amorphous and polymorphism.

2. **Micrometric and Powder Rheology:** Particle size and distribution, average particle size, number and weight distribution, particle number, methods for determining particle volume, optical microscopy, sieving, sedimentation, measurement, particle shape, specific surface, methods for determining surface area; permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness & flow properties.

3. **Surface and Interfacial Phenomenon:** Liquid interface, surface and interfacial tensions, surface free energy, measurement of surface and interfacial tensions, Spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB classification, solubilization, detergency, adsorption at solid interfaces, solid-gas and Solid - liquid interfaces, complex films and electrical properties of interface.

4. **Viscosity and Rheology:** Newtonian systems, Law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity, capillary, falling ball, rotational viscometers.

5. **Dispersion Systems:** Colloidal Dispersions: Definition, types, properties of colloids, protective colloids, applications of colloids in pharmacy; Suspensions and Emulsions: Interfacial properties of suspended particles, settling in suspensions, theory of sedimentation, effect of Brownian movement, sedimentation of flocculated articles, sedimentation parameters, wetting of particles, controlled flocculation, flocculation in structured vehicles, rheological considerations; Emulsions-types, theories, physical stability.

6. **Complexation:** Classification of complexes, methods of preparation and analysis, applications.

7. **Kinetics and Drug Stability:** General considerations & concepts, half-life determination, Influence of temperature, light, solvent, catalytic species and other factors, Accelerated stability study, expiration dating.

8. **Buffers:** Buffer equations and buffer capacity in general, buffers in pharmaceutical systems, preparation, stability, buffered isotonic solutions, measurements of tonicity, calculations and methods of adjusting isotonicity.

Recommended Books:

1. Martin’s Physical Pharmaceutical Sciences by P. J. Sinko (Lippincott William and Wilkins, Baltimore).
5. Gennaro et al., “Remington’s The Science & Practice of Pharmacy” (Lippincott William and Wilkins, Baltimore).
1. Significance of quantitative analysis in quality control, Different techniques of analysis, Preliminaries and definitions, Significant figures, Rules for retaining significant digits, Types of errors, Mean deviation, Standard deviation, Statistical treatment of small data sets, Selection of sample, Precision and accuracy. Fundamentals of volumetric analysis, methods of expressing concentration, primary and secondary standards.

3. **Oxidation Reduction Titrations**: Concepts of oxidation and reduction, Redox reactions, Strengths and equivalent weights of oxidizing and reducing agents, Theory of redox titrations, Redox indicators, Cell representations, Measurement of electrode potential, Oxidation-reduction curves, Iodometry and Iodometry, Titrations involving ceric sulphate, potassium iodate, potassium bromate, potassium permanganate; titanous chloride and Sodium 2, 6-dichlorophenol indophenol.

4. **Precipitation Titrations**: Precipitation reactions, Solubility products, Effect of acids, temperature and solvent upon the solubility of a precipitate. Argentometric titrations and titrations involving ammonium or potassium thiocyanate, mercuric nitrate, and barium sulphate, Indicators, Gay-Lussac method, Mohr’s method, Volhard’s method and Fajans method.

5. **Gravimetric Analysis**: Precipitation techniques, Solubility products; The colloidal state, Supersaturation co-precipitation, Postprecipitation, Digestional washing of the precipitate, Filtration, Filter papers and crocibles, Ignition, Thermogravimetric curves, Specific examples like barium sulphate, aluminium as aluminium oxide, calcium as calcium oxalate and magnesium as magnesium pyrophosphate, Organic precipitants.

09 1102P PHARMACEUTICAL ANALYSIS - I (LAB)

The students should be introduced to the main analytical tools through demonstrations. They should have a clear understanding of a typical analytical balance, the requirements of a good balance, weights, care and use of balance, methods of weighing and errors in weighing. The students should also be acquainted with the general apparatus required in various analytical procedures.

1. Standardization of analytical weights and calibration of volumetric apparatus.
2. Acid Base Titrations: Preparation and standardization of acids and bases; some exercises related with determination of acids and bases separately or in mixture form, some official assay procedures e.g. boric acid should also be covered.
3. Oxidation Reduction Titrations: Preparation and standardization of some redox titrants e.g. potassium permanganate, potassium dichromate, iodine, sodium thiocyanate etc. Some exercises related to determination of oxidizing and reducing agents in the sample shall be covered. Exercises involving potassium iodate, potassium bromate, iodine solution, titanous chloride, sodium 2, 6-dichlorophenol indophenol, and ceric ammonium sulphate.
4. Precipitation titrations: Preparation and standardization of titrants like silver nitrate and, ammonium thiocyanate, Titrations according to Mohr’s, Volhard’s and Fajans methods.
5. Gravimetric Analysis: Preparation of gooch crucible for filtration and use of sintered glass crucible, Determination of water of hydration, some exercises related to gravimetric analysis should be covered.

Recommended Books:

09 1103 PHARMACEUTICAL CHEMISTRY - I (Inorganic Pharmaceutical Chemistry)

An outline of methods of preparation, uses, sources of impurities, tests for purity and identity, including limit tests for iron, arsenic, lead, heavy metals, chloride, sulphate and special tests if any, of the following classes of inorganic pharmaceuticals included in Indian Pharmacopoeia.

1. Acids and Bases: Buffers, Water.
5. Cationic and anionic components of inorganic drugs useful for systemic effects.
9. Complexing and chelating agents used in therapy
10. Miscellaneous Agents: Sclerosing agents, expectorants, emetics, poisones and antidotes, sedatives, diluents, excipients, suspending agents, colorants etc.
11. Inorganic Radio Pharmaceuticals: Nuclear radio pharmaceuticals, Reactions, Nomenclature, Methods of obtaining their standards and units of activity, measurement of activity, clinical applications and dosage, hazards and precautions.

09 1103P PHARMACEUTICAL CHEMISTRY - I (LAB)
L-T-P : 0-0-4 Credit : 2

The background and systematic qualitative analysis of inorganic mixtures of up to four radicals. Six Mixtures to be analyzed, preferably by semimicro methods. At identification tests for pharmacopoeial inorganic pharmaceuticals and qualitative tests for cations & anions should be covered.

Recommended Books:
1. Inorganic Medicinal and Pharmaceutical Chemistry by Block, Roche, Soine, Wilson
2. Bentley and Driver’s Text Book of Pharmaceutical Chemistry.

09 1104 PHARMACOGNOSY - I
L-T-P : 3-0-0 Credit : 3

1. Definition, history, scope and development of Pharmacognosy
2. Sources of drugs: Biological, marine, mineral and plant tissue cultures as sources of drugs
3. Classification of drugs: Alphabetical, morphological, taxonomical, chemical and pharmacological classification of drugs.
4. Plant taxonomy: study of the following families with special reference to medicinally important plants - Apocynaceae, Solanaceae, Rutaceae, Umbelliferae, Leguminosae, Rubiaceae, Liliaceae, Gramineae, Labiatae, Cruciferae, Papaveraceae.
6. Quality control of crude drugs: Adulteration of crude drugs and their detection by organoleptic, microscopic, physical, chemical and biological methods and properties.
7. An introduction to active constituents of drugs: their isolation, classification and properties.
8. Systematic pharmacognostic study of following:
 a) Carbohydrates and derived products: agar, guar gum, acacia, Honey, Isabgol, pectin, Starch, sterculia and Tragacantyh.
 b) Lipids: Bees wax, Castor oil, Cocoa butter, Cod-liver oil, Hydnocarpus oil, Kokum butter, Lard, Linseed oil, Rice, Bran oil, Shark liver oil and Wool fat.

09 1104P PHARMACOGNOSY – I (LAB)
L-T-P : 0-0-4 Credit : 2

1. Morphological characteristics of plant families mentioned in theory.
3. Determination of leaf constants such as stomatal index, stomatal number, vein-islet number, vein-termination number and palisade ratio.
4. Identification of crude drugs belonging to carbohydrates and lipids.
5. Preparation of herbarium sheets.

Recommended Books:
2. Trease G.E. and Evans W.C., Pharmacognosy (Balliene Tindall, Eastbourne)
4. Tyler V.E., Brady L.R. and Robbers J.E., Pharmacognosy (Len & Febiger, Philadelphia)
24 1105 COMMUNICATIVE ENGLISH
L-T-P : 3-1-0 Credit : 3

2. Common errors, comparison, Syntax.
3. Antonyms, Homonyms, Comprehension based on topics of Science & Technology
5. Expansion (worked & phrase)
6. Official Correspondence, Memorandum, Circular letter.
7. Applying for a job, Resume
8. Business Correspondence, Report Writing, E-mail.
9. Phonetics (Symbol and Transcription), Pronunciation.
10. Reading – developing Reading skill.
11. Group Discussion.

Recommended Books:
2. English grammar by Dr. D. Thakur
6. Communication in English for Technical Student by Orient Longman.
8. A Student’s Grammar of the English Language by Sidney Greendaum & Randolph Quirk (Pearson Education)

09 1106 REMEDIAL MATHEMATICS
L-T-P : 3-1-0 Credit : 3

2. Measures of Central Value: Objectives and pre-requisites of an ideal, measure, mean, mode and median.
4. Analytical Plans Geometry: Certain co-ordinates, distance between two points, area of triangle, a locus of point, straight line, slope and intercept from, double - intercept form, normal (perpendicular form), slope-point and two point form, general equation of first degree.
5. Calculus:
 Differential: Limits and functions, definition of differential coefficient, differentiation of standard functions, including function of a function (Chain rule). Differentiation of implicit functions, logarithmic differentiation, parametric differentiation, successive differentiation.
 Integral: Integration as inverse of differentiation, indefinite integrals of standard forms, integration by parts, substitution and partial fractions, formal evaluation of definite integrals.

Recommended Books:

Or

09 1107 REMEDIAL BIOLOGY
L-T-P : 2-0-0 Credit : 2

1. Methods of classification of plants.
2. Plant cell, its structure and non-living inclusions; mitosis and meiosis; different types of plant tissues and their functions.
4. General Survey of Animal Kingdom; Structure and life history of parasites as illustrated by amoeba, entamoeba, trypanosoma, plasmodium, taenia, ascaris, schistosoma, oxyuris, and ancylostoma.
5. General Structure and life history of insects like mosquito, housefly, mites and silkworm.
6. Cell & Tissue:
 - Structure of cell, its components and their functions.
 - Mechanism of transport through the cell membrane.

09 1107P REMEDIAL BIOLOGY (LAB)
L-T-P : 0-0-2 Credit : 1

1. Morphology of plant parts indicated in theory.
2. Care, use and type of microscopes.
3. Gross identification of slides of structure and life cycle of lower plants animals mentioned in theory.
4. Morphology of plant parts indicated in theory.
5. Preparation, microscopic examination of stem, root and leaf of monocot and dicot plants.

Recommended Books:
1. Dutta: "Text Book of Botany".
2. Maheshwari: "Text Book of Botany".
3. Truemans: "Elementary Biology".
4. Vidyarathii: "Text Book of Biology".
5. Gupta: "Genetics".

SEMESTER - II

09 1201 PHARMACEUTICS - II (Unit Operations I, including Engg. Drawing)
L-T-P : 3-0-0 Credit : 3

1. Unit Operations: Introduction, basic laws.
2. Fluid Flow: Types of flow, Reynold's number, Viscosity, Concept of boundary layer, basic equations of fluid flow, valves, flow meters, manometers and measurement of flow and pressure.
3. Material Handling Systems:
 a. Liquid handling - Different types of pumps.
 b. Gas handling - Various types of fans, blowers and compressors.
 c. Solid handling - Bins, Bunkers, Conveyers, Air transport.
6. Dehumidification and Humidity Control: Basic concepts and definition, wet bulb and adiabatic saturation temperatures, Psychrometric chart and measurement of humidity, application of humidity measurement in pharmacy, equipments for dehumidification operations.
7. Refrigeration and Air Conditioning: Principal and applications of refrigeration and air conditioning.
9. Industrial Hazards and Safety Precautions: Mechanical, Chemical, Electrical, fire and dust hazards. Industrial dermatitis, Accident records etc.

09 1201P PHARMACEUTICS - II (LAB)
L-T-P : 0-0-4 Credit : 2

1. Measurement of flow of fluids and their pressure, determination Reynold's number and calculation of Frictional losses.
2. Evaluation of filter media, determination of rate of filtration and study of factors affecting filtration.
3. Experiments to demonstrate applications of centrifugation.
4. Thermometers and Psychrometric charts.
5. Determination of humidity - use of Dry Bulb and Wet Bulb.
7. Basic Engineering Drawing Practice - Bolts, nuts, rivetted fronts, screws, worn screws as per specification.
8. Drawing of simple pharmaceutical machinery parts.

Recommended Books:
1. Cooper and Gunn’s Tutorial Pharmacy Edited by S.J.Carter (CBS Publishers, Delhi)
3. Chemical Engineering by Badger and Banchero (Mc Graw Hill, New Delhi)
4. Pharmaceutical Dosage forms by Aulton. (Churchill Livingstone, Edinburg)

09 1202 PHARMACEUTICAL CHEMISTRY - II (Physical Chemistry)
L-T-P : 3-0-0
Credit : 3

2. The Liquid State: Physical properties (surface tension, parachor, viscosity, refractive index, optical rotation, dipole moments and chemical constituents).
4. There dynamics: First, second and third laws, Zeroth law, absolute temperature scale, thermochemical equations, phase equilibria and phase rule.
7. Chemical Kinetics: Zero, first and second order reactions, complex reactions, theories of reaction kinetics, characteristics of homogeneous and heterogeneous catalysis, acid base and enzyme catalysis.
8. Quantum Mechanics: Postulates of quantum mechanics, operators in quantum mechanics, the Schrödinger wave equation.

09 1202P PHARMACEUTICAL CHEMISTRY - II (LAB)
L-T-P : 0-0-4
Credit : 2

1. To determine molar mass by Rast method and cryoscopic method.
2. To determine refractive index of given liquids and find out the contribution of carbon, hydrogen and oxygen in molar refraction of a compound.
3. To determine molar mass of volatile liquids by Victor-Meyer method.
4. To determine the specific rotation of sucrose at various concentrations and determine the intrinsic rotation.
5. To determine the heat of hydration and heat of neutralization.
6. To determine the cell constant, verify Ostwald dilution law and perform conductometric titration.
7. To determine rate constant of simple reaction.

Recommended Books:

09 1203 PHARMACEUTICAL CHEMISTRY - III (Organic Chemistry)
L-T-P : 3-0-0
Credit : 3

The subject of organic chemistry will be treated in its modern perspective keeping for the sake of convenience, the usual classification of organic compounds:
1. Structure and Properties: Atomic structure, Atomic orbitals, Molecular orbital theory, wave equation, Molecular orbitals, Bonding and Antibonding orbitals, Covalent bond, Hybrid orbitals, Intramolecular forces, Bond dissociation energy, Polarity of bonds, Polarity of molecules, structure and physical properties, Intermolecular forces, Acids and bases.
2. Stereochemistry: Isomerism and nomenclature and associated physicochemical properties, optical activity, stereoisomerism, specification of configuration, Reactions involving stereoisomers, chirality, chiral reagents conformations.
PHARMACEUTICAL CHEMISTRY - III (LAB)

L-T-P : 0-0-4

Credit : 2

1. The student should be introduced to the various laboratory techniques through demonstrations involving synthesis of selected organic compounds (e.g. aspirin, p-bromoacetanilide, anthraquinone from anthracine, reduction of nitrobenzene etc).
2. Identification of organic compounds and their derivatisation.
3. Introduction to the use of stereomodels.

Recommended books:
1. Organic chemistry by Morrison and Boyd. (Prentice Hall of India, New Delhi)
2. Advanced organic chemistry by Bhal & Bhal (S.Chand, New Delhi)
4. Bently and Drivers text of Pharmaceutical chemistry by Oxford University, New Delhi

ANATOMY, PHYSIOLOGY & HEALTH EDUCATION (APHE) -I

L-T-P : 3-0-0

Credit : 3

1. Scope of anatomy and physiology and basic terminology used these subjects.
2. Structure of cell, its components and their functions.
3. Elementary Tissues of the Human Body: Epithelial, connective, muscular and nervous tissues, their sub-types and their characteristics.
5. Skeletal Muscles: Gross anatomy; physiology of muscle contraction, physiological properties of skeletal muscles and their disorders.
6. Haemopoietic System: Composition and functions of blood and its elements, their disorders, blood groups and their significance, mechanism of coagulation, disorders of platelets and coagulation.
7. Lymph and Lymphatic System: Composition, formulation and circulation of lymph; disorders of lymph and lymphatic system. Basic physiology and functions of spleen.

Advanced Mathematics

L-T-P : 3-1-0

Credit : 3

1. Differential equations: Revision of integral calculus, definition and formation of differential equations, equations of first order and first degree, variable separable, homogeneous and linear differential equations and equations reducible to such types, linear differential equations of order greater than one with constant coefficients, complementary function and particular integral, simultaneous integral differential equations, pharmaceutical applications.
2. Laplace transforms: Definition, transforms of elementary functions, properties of linearity and shifting, inverse laplace transforms, transforms of derivatives, solution of ordinary and simultaneous differential equations.
3. Biometrics: Significant digits bend rounding of numbers, data collection, random and non-random sampling methods, sample size, data organization, diagrammatic representation of data, bar, pie, 2-D and 3-D diagrams, measures of central tendency, measures of dispersion, Standard Deviation and standard error of means, coefficient of variation, confidence (fiducial) limits, probability and events, Bayes' theorem, probability theorems, probability distributions, elements of binomial and Poisson distribution, normal Distribution curve & properties, kurtosis and skewness, correlation and regression analysis, method of least squares, statistical inference, Student's and paired t-test, F-test and elements of ANOVA, applications of statistical concepts in Pharmaceutical Sciences.

Recommended Books:

SEMESTER – III

09 1301 PHARMACEUTICS – III (Unit Operations II)
L-T-P : 3-0-0 Credit : 3

1. Stoichiometry: Unit processes material and energy balances, molecular units, mole fraction, tie substance, gas laws, mole volume, primary and secondary quantities, equilibrium state, rate process, steady and unsteady states, dimensionless equations, dimensionless formulae, dimensionless groups, different types of graphic representation, mathematical problems.
2. Heat Transfer: Source of heat, heat transfer, steam and electricity as heating media, determination of requirement of amount of steam/electrical energy, steam pressure, Boiler capacity, Mathematical problems on heat transfer.
3. Evaporation: Basic concept of phase equilibria, factor affecting evaporation, evaporators, film evaporators, single effect and multiple effect evaporators, Mathematical problems on evaporation.
5. Drying: Moisture content and mechanism of drying, rate of drying and time of drying calculations; classification and types of dryers, dryers used in pharmaceutical industries and special drying methods. Mathematical problems on drying.
6. Size Reduction and Size Separation: Definition, objectives of size reduction, factors affecting size reduction, laws governing energy and power requirements of a mills including ball mill, hammer mill, fluid energy mill etc.
9. Reactors and fundamentals of reactors design for chemical reactions.

09 1301P PHARMACEUTICS – III (LAB)
L-T-P : 0-0-4 Credit : 2

1. Determination of overall heat transfer coefficient.
2. Determination of rate of evaporation.
3. Experiments based on steam, extractive and azeotropic distillations.
4. Determination of rare of drying, free moisture content and bound moisture content.
5. Experiments to illustrate the influence of various parameters on the rate of drying.
6. Experiments to illustrate principles of size reduction, Laws governing energy and power requirements of size Reduction.
7. Experiments to illustrate solid-solid mixing, determination of mixing efficiency using different types of mixers.

Recommended Books:
1. Cooper and Gunn’s Tutorial Pharmacy Edited by S.J.Carter (CBS Publishers, Delhi)
3. Chemical Engineering by Badger and Banchero (Mc Graw Hill, New Delhi)
4. Pharmaceutical Dosage forms by Aulton,(Churchill Livingstone, Edinburg)
5. Gennaro, “Remington’s The Science & Practice of Pharmacy” (Lippincott William and Wilkins).
Nucleophillic aromatic substitutions; α β unsaturated carbonyl compounds; Conservation of orbital symmetry and rules., Electrocyclic, Cycloaddition and sigmatropic reactions; Neighbouring group effects; Catalysis by transition metal complexes, Stereoselective and steroispecific reactions; New organic reagents used in drug synthesis.

Heterocyclic Compounds: Chemistry, preparations and properties of some important heterocyclis containing 3, 4,5,6 & 7 atoms with one or two heteroatoms like O, N, S.

Chemistry of Lipids, Carbohydrates, Proteins and Nucleic acids.

Recommended Books:
3. Bentley and Driver’s Text Book of Pharmaceutical Chemistry. (Oxford University Press, New Delhi)

Resins: Study of Drugs Containing Resins and Resin Combination like Colophony, podophyllum, jalap, cannabis, capsicum, myrrh, asafoetida, balsam of tolu, balsam of peru, benzoin, turmeric, ginger.

Tannis: Study of tannins and tannin containing drugs like Gambir, black catechu, gall and myrobalan.

Volatile Oils: General methods of obtaining volatile oils from plants, Study of volatile oils of Mentha, Coriander, Cinnamon, Cassia, Lemon peel, Orange peel, Lemon grass, Citronella, Caraway, Dill, Spearmint, Clove, Fennel, Nutmeg, Eucalyptus, Chenopodium, Cardamom, Valerian, Musk, Palmarosa, Gaultheria, Sandal wood.

Phytochemical Screening:
1. Preparation of extracts.
2. Screening of alkaloids, saponins, cardenolides and bufadienolides, flavonoids and leucoanthocyanidins, tannins and polyphenols, anthraquinones, cynogenetic glycosides, amino acids in plant extracts.

Fibres: Study of fibres used in pharmacy such as cotton, silk, wool, nylon, glass-wool, polyester and asbestos.

Pharmaceutical aids: Study of pharmaceutical aids like talc, diatomite, kaolin, bentonite, gelatin and natural colors.

Recommended Books:
2. Trease G.E. and Evans W.C., Pharmacognosy (Balliene Tindall, Eastbourne)
4. Tyler V.E., Brady L.R. and Robbers J.E., Pharmacognosy (Len & Febiger, Philadelphia)
Theoretical considerations and application in drug analysis and quality control of the following analytical techniques.

1. Non-aqueous titrations
2. Complexometric titrations
4. Extraction procedures including separation of drugs from excipients
5. Chromatography: The following techniques will be discussed with relevant examples of Pharmacopoeial products. TLC, HPLC, GLC, HPTLC, Paper Chromatography and Column Chromatography.
6. Potentiometry
7. Conductometry
8. Coulometry
9. Polarography
10. Amperometry

Recommended Books:
1. Vogel’s Text Book of Quantitative Chemical Analysis.
2. Practical Pharmaceutical Analysis by Beckette and Stenlake Vol. I & II.
3. Indian Pharmacopoeia Vol. I & II
4. Instrumental methods chemical analysis by B.K. Sharma
5. Bently and Driver’s Text Book of Pharmaceutical Chemistry.
8. **Sense Organs:** Basic anatomy and physiology of the eye (vision), ear (hearing), taste buds, nose (smell) and skin (superficial receptors).

9. a. **Concepts of health and disease:** Disease causing agents and prevention of disease.
 b. **Classification of food requirements:** Balanced diet, nutritional deficiency disorders, their treatment and prevention, specifications for drinking water.
 c. **Demography and family planning:** Medical termination of pregnancy.
 d. **Communicable diseases:** Brief outline, their causative agents, modes of transmission and prevention (Chicken pox, measles, influenza, diphtheria, whooping cough, tuberculosis, poliomyelitis, helminthiasis, malaria, filariasis, rabies, trachoma, tetanus, leprosy, syphilis, gonorrhoea, and AIDS).
 e. **First Aid:** Emergency treatment of shock, snake bites, burns, poisoning, fractures and resuscitation methods.

09 1305P APHE –II (LAB)
L-T-P : 0-0-4
Credit : 3

1. Study of different systems with the help of charts and models.
2. Microscopic studies of different tissues.
4. Physiological experiments on nerve-muscle preparations.
5. Determination of vital capacity, experiments on spirometry.

Recommended books:
1. Anatomy and Physiology in Health and Illness by Ross and Willson (Churchill living stone)
4. Human Physiology, C C Chatterjee, Medical allied agency, Calcutta

SEMESTER - IV

09 1401 PHARMACEUTICS - IV (Dispensing and Community Pharmacy)
L-T-P : 3-0-0
Credit : 3

1. **Definition and Scope**
2. **Prescription:** Handling of prescription, source of errors in prescription, care required in dispensing procedures including labeling of dispensed products.
3. General dispensing procedures including labeling of dispensed products.
4. **Pharmaceutical calculations:** Posology, calculation of doses for infants, adults and elderly patients; Enlarging and reducing recipes percentage solutions, allegation, alcohol dilution, proof spirit, isotonic solutions, displacement value etc.
5. Principles involved and procedures adopted in dispensing of: Typical prescriptions like mixtures, solutions, emulsions, creams, ointments, powders, capsules, pastes, jellies, suppositories, ophthalmic, pastilles, lozenges, pills, lotions, liniments, inhalations, paints sprays tablet triturates, etc.
6. Incompatibilities: Physical and chemical incompatibilities, inorganic incompatibilities including incompatibilities of metals and their salts, non-metals, acids, alkalis, organic incompatibilities. Purine bases, alkaloids, pyrazolone derivatives, amino acids, quaternary ammonium compounds, carbohydrates, glycosides, anesthetics, dyes, surface active agents, correction of incompatibilities. Therapeutic incompatibilities.
7. Community Pharmacy: Organization and structure of retail and whole sale drug store-types of drug store and design, legal requirements for establishment, maintenance and drug store-dispensing of proprietary products, maintenance of records of retail and wholesale, patient counseling, role of pharmacist in community health care and education.

09 1401P PHARMACEUTICS - IV (LAB)
L-T-P : 0-0-4
Credit : 2

1. Dispensing of prescriptions falling under the categories: Mixtures, solutions, emulsions. Creams, ointments, powders, suppositories, ophthalmics, capsules, pastes, jellies, pastille, lozenges, pills, tablet triturates, lotions, liniments, inhalations, paints, etc.
2. Identification of various types of incompatibilities in prescription, correction thereof and dispensing of such prescriptions.
3. Dispensing procedures involving pharmaceutical calculations, pricing of prescriptions and dosage calculations for pediatric and geriatric patients.
4. Dispensing of prescriptions involving adjustment of tonicity.
5. Categorization and storage of pharmaceutical products based on legal requirements of labeling and storage.
6. Project report on visit to the nearby community for counseling on the rational use of drugs and aspects of health care.

Recommended books:
1. Cooper & Gunn’s Dispensing for Pharmaceutical students CBS Publishers, New Delhi
2. Dispensing Pharmacy by R.M.Mehta (Vallabh Prakashan, Delhi)
3. Remington’s “The Science & Practice of Pharmacy” (Lippincott William and Wilkins)

09 1402 PHARMACEUTICAL MICROBIOLOGY
L-T-P : 3-0-0

1. Introduction to the scope of microbiology.
2. Structure of bacterial cell.
5. Nutrition, cultivation, isolation of bacteria, actinomycetes, fungi, viruses, etc.
6. Microbial genetics and variation.
7. Control of microbes by physical and chemical methods.
 a. Disinfection, factors influencing disinfectants, dynamics of disinfection, disinfectants and antiseptics and their evaluation.
 b. Sterilization, different methods, validation of sterilization methods & equipments.
8. Sterility testing of all pharmaceutical products.
10. Microbial assays of antibiotics, vitamins & amino acids.

09 1402P PHARMACEUTICAL MICROBIOLOGY (LAB)
L-T-P : 0-0-4

Experiments devised to prepare various types of culture media, sub culturing of common aerobic and anaerobic bacteria, fungus and yeast, various staining methods, various methods of isolation and identification of microbes, sterilization techniques and their validation, evaluation of antiseptics and disinfectants, testing the sterility of pharmaceutical products as per I.P. requirements, microbial assay of antibiotics and vitamins, etc.

Recommended books:
1. Microbiology of Pelczar and Kreig.
2. Text Book of Microbiology by Anantanarayana and Panicker.
3. Dispensing for pharmaceutical students by Cooper and Gunn.
4. Bently’s Text Book of Pharmaceutics
5. Tutorial Pharmacy by Cooper and Gunn
6. Indian Pharmacopoeia
7. Shah and Shah (Pharmaceutical Microbiology)

09 1403 PHARMACOGNOSY - III
L-T-P : 3-0-0

1. Study of the biological sources, cultivation, collection, commercial varieties, chemical constituents, substitutes, adulterants, uses, diagnostic macroscopic and microscopic features and specific chemical tests of following groups of drugs containing glycosides.
 - Saponins : Liquorice, ginseng, dioscorea, sarsaparilla, and senega.
 - Cardioactive sterols: Digitalis, squill, strophanthus and thevetia.
 - Anthraquinone cathartics: Aloe, senna, rhubarb and cascara.
 - Others: Psoralea, Ammi majus, Ammi visnaga, gentian, saffron, chirata, quassia.
3. The holistic concept of drug administration in traditional systems of medicine. Introduction to ayurvedic preparations like Arishtas, Asvas, Gutikas, Tailas, Chumas, Lehyas and Bhasmas.
09 1403P PHARMACOGNOSY - III (LAB)
L-T-P : 0-0-4 Credit : 2

1. Identification of crude drugs listed in theory.
2. Microscopic study of some important glycoside containing crude drugs as outlined above. Study of powdered drugs.
3. Standardization of some traditional drug formulations.

Recommended Books:
2. Trease G.E. and Evans W.C., Pharmacognosy (Balliene Tindall, Eastbourne)
4. Tyler V.E., Brady L.R. and Robbers J.E., Pharmacognosy (Len & Febiger, Philadelphia)

09 1404 PATHOPHYSIOLOGY OF COMMON DISEASES
L-T-P : 3-0-0 Credit : 3

2. Basic Mechanisms involved in the process of inflammation and repair: Alterations in vascular permeability and blood flow, migration of WBC, acute and chronic inflammation, mediators of inflammation, brief outline of the process of repair.
3. Pathophysiology of Common Diseases: Rheumatoid arthritis, gout, epilepsy, psychosis, depression, mania, hypertension, angina, congestive heart failure, atherosclerosis, myocardial infarction, diabetes, peptic ulcer, asthma, ulcerative colitis, hepatic disorders, acute and chronic renal failure, tuberculosis, urinary tract infections, sexually transmitted diseases, anemia and common types of neoplasm. Wherever applicable the molecular basis should be discussed.

Recommended Books:
1. Pathologic basis of diseases by Robbins S.L. (Harcourt India, New Delhi).
2. Pathology Quick Review and MCQs based on Harsh Mohan’s Text Book of Pathology (Jaypee brothers medical publishers, New Delhi)

09 1405 BASIC ELECTRONICS AND COMPUTER APPLICATIONS
L-T-P : 3-0-0 Credit : 3

1. Basic Electronics: Semiconductors, p-n function diode, LED, photodiode and its uses. Rectifiers (half wave, full wave / with filters), transistors configurations, transistor amplifiers. Introduction to Integrated circuits, photo cells and photomultiplier tubes.
2. Computers:
 2.1 Introduction to Computers: History of Computer development and respective generation: Abacus, Napier’s-Bones, Slide rule, Pascal’s Calculator. Need to use computers, applications in pharmacy and in general.
 2.2 Operating Systems: Introduction to types of operating systems, UNIX, MS-DOS, etc. RAM, ROM, Virtual Memory etc.
 2.3 Type of Languages: Conventional languages; their advantages, limitations; C, Pascal, FORTRAN, Programming of these languages.
 2.4 Introduction to Computer Networks: Architecture of seven layers of communications.
 2.5 Introduction to Data Structure: Like Queues, list, trees, Binary trees algorithms, Flow chart, Structured Systems, Analysis and development, Ingress-SQL, Gateways etc. Statistics, methodologies. Basic Language: Constants and Variables: Character set, constants, variables, Naming the variables getting data into memory, LET, INPUT, READ. DATA, Print Statement. Expressions: Arithmetic expression, Hierarchy of operations, Rules of Arithmetic, Evaluation of expressions, Relational expressions, Logical operations, Library functions. Printer Control: Comma and semicolon control, the TAB function, PRINT, LPRINT. Functions and Subroutines: User defined functions, subroutines, subscripted variables.
 2.6 Computer Graphics:
 2.7 Computer applications in pharmaceutical and clinical studies.

09 1405P BASIC ELECTRONICS AND COMPUTER APPLICATIONS (LAB)
L-T-P : 0-0-2 Credit : 2
Exercises based on the following are to be dealt:
1. Computer operating systems like Unix, MS DOS, etc.
2. Simple program in BASIC
3. Study of software packages like WORD-STAR, LOTUS-123 etc.

Recommended Books:

09 1406 PHARMACEUTICAL JURISPRUDENCE & ETHICS
L-T-P : 3-0-0
Credit : 3

1. Introduction
 b. Drugs & Pharmaceutical Industry - A brief review.
 c. Pharmaceutical Education - A brief review.
2. An elaborate study of the following
 a. Pharmaceutical Ethics
 b. Pharmacy Act 1948.
 c. Drugs and Cosmetics Act 1940 and Rules 1945.
 f. Drugs Price Control Order.
3. A brief study of the following with special reference to the main provisions.
 a. Poisons Act 1919
 b. Drugs and Magic Remedies (Objectionable Advertisements) Act 1954
 e. States Shops & Establishments Act & Rules.
 f. Insecticides Act 1968.
 g. AICTE Act 1987.
 h. Factories Act 1948.
4. A brief study of the various Prescription/Non-prescription Products, Medical/Surgical accessories, Diagnostic aids, appliances available in the market.
 (Note: The teaching of all the about Acts should cover the latest amendments).

Recommended Books:
1. A Textbook of Forensic Pharmacy by B.M.Mithal
2. A Textbook of Forensic Pharmacy by N.K.Jain
3. Drugs and Cosmetics Act and Rules published by Government of India
4. Pharmacy Act, Published by Government of India
5. Law of Drugs
6. Drug Cases published by International Law Book Co. Delhi (Reference)

SEMESTER - V

09 1501 PHARMACEUTICS – V (Pharmaceutical Technology - I)
L-T-P : 3-0-0
Credit : 3

4. Extraction and Galenical Products: Principle and method of extraction, preparation of infusion, tinctures, dry
5. Blood Products and Plasma Substitutes: Collection, processing and storage of whole human blood, concentrated human RBCs, dried human plasma, human fibrinogen, human thrombin, human normal immunoglobulin, human fibrin, foam plasma substitutes, -ideal requirements, PVP, dextran etc. for control of blood pressure as per I.P.
8. Cosmetology and Cosmetic Preparations: Fundamentals of cosmetic science, structure and functions of skin and hair. Formulation, preparation and packaging of cosmetics for skin, hair, dentifrice and manicure preparations like nail polish, Lipsticks, eye lashes, baby care products etc.

09 1501P PHARMACEUTICS – V (LAB)
L-T-P : 0-0-4
Credit : 2

1. Preparation, evaluation and packaging of liquid orals like solutions, suspensions and emulsions, ointments, suppositories, aerosols, eye drops, eye ointments etc.
2. Preparation of pharmacopoeial extracts and galenical products utilizing various methods of Extraction.
3. Collection, processing, storage and fractionation of blood.
4. Formulation of various types of cosmetics for skin, hair, dentifrices and manicure preparations.

Recommended Books:
1. Bently’s Textbook of pharmaceutics edited by E.A. Rawlins (All India Traveller Book Seller, New Delhi)
2. The Theory and Practice of Industrial Pharmacy by Lachmann, Libermann and Kanig (Varghese Pub. House, Bombay)
4. REMINGTON : The Science and Practice of Pharmacy. (Lippincott Williams & Wilkins, Baltimore)
5. Pharmaceutics : The Science of Dosage Form Design by Aulton (Churchill Livingstone, Edinburgh)

09 1502 PHARMACEUTICAL CHEMISTRY -V (Biochemistry)
L-T-P : 3-0-0
Credit : 3

1. Biochemical organization of the cell and transport processes across cell membrane.
2. The concept of free energy, determination of change in free energy - from equilibrium constant and reduction potential, bioenergetics, production of ATP and its biological significance.
5. Carbohydrate Metabolism: Conversion of polysaccharide to glucose-1-phosphate, Glycolysis and fermentation and their regulation, Gluconeogenesis and glycogenolysis, Metabolism of galactose and galactosemia, Role of sugar nucleotides in biosynthesis, and Pentosephosphate pathway.
6. The Citric Acid Cycle: Significance, reactions and energetic of the cycle, Amphibolic role of the cycle, and Glyoxalic acid cycle.
7. Lipids Metabolism: Oxidation of fatty acids, oxidation & energetic, a-oxidation, Biosynthesis of ketone bodies and their utilization. Biosynthesis of saturated and unsaturated fatty acids, Control of lipid metabolism, Essential fatty acids & eicosanoids (prostaglandins, thromboxanes and leukotrienes), phospholipids, and sphingolipids.
8. Biological Oxidation: Redox-potential, enzymes and co-enzymes involved in oxidation reduction & its control, The respiratory chain, its role in energy capture and its control, Energetics of oxidative phosphorylation, Inhibitors of respiratory chain and oxidative phosphorylation Mechanism of oxidative phosphorylation.
synthesis. Brief account of genetic engineering and polymerase chain reactions.

13. Regulation of gene expression.

09 1502P PHARMACEUTICAL CHEMISTRY -V (LAB) Credit : 2
L-T-P : 0-0-4

1. Preparation of standard buffers (citrate, phosphate and carbonate) and measurement of pH.
2. Titration curve for amino acids.
3. Separation of amino acids by two dimensional paper chromatography and gel electrophoresis.
4. The separation of lipids by TLC.
5. Separation of serum proteins by electrophoresis on cellulose acetate.
8. The identification of c-terminal amino acids of a protein.
9. The determination of glucose by means of the enzyme glucose oxidase.
10. The isolation and assay of glycogen from the liver and skeletal muscle of rats.
12. The isolation and determination of RNA and DNA.

Recommended Books:
3. Fundamentals of Biochemistry by Dr. A.C. Deb (New Central Book Agency, Calcutta)
4. Text Book of Biochemistry by Dr. A.V.S.S.Rama Rao (UBS Publishers & Distributors, New Delhi)
5. Text Book of Biochemistry by Dr. U. Satyanarayana

09 1503 PHARMACOLOGY - I Credit : 3
L-T-P : 3-0-0

1. General Pharmacology: Introduction to Pharmacology, Sources of drugs, Dosage forms and routes of administration, mechanism of action, Combined effect of drugs, Factors modifying drug action, tolerance and dependence, Pharmacogenetics, Absorption, Distribution, Metabolism and Excretion of drugs, Principles of Basic and Clinical pharmacokinetics, Adverse Drug Reactions and treatment of poisoning, ADME drug interactions, Bioassay of Drugs and Biological Standardization, Discovery and development of new drugs.
2. Pharmacology of Peripheral Nervous System:
 a. Neurohumoral transmission (autonomic and Somatic)
 b. Parasympathomimetics, Parasympatholytics, Sympathomimetics, Adrenergic Receptor and neuron blocking agents, Ganglionic stimulants and blocking agents.
 c. Neuromuscular blocking Agents.
 d. Local anesthetic Agents.
3. Pharmacology of Central Nervous System:
 a. Neurohumoral transmission in the C.N.S.
 b. General Anesthetics.
 c. Alcohols and disulfiram.
 d. Sedatives, hypnotics, Anti-anxiety agents and centrally acting muscle relaxants.
 e. Psychopharmacological agents (anti-psychotics) antidepressants anti maniacs and hallucinogens.
 f. Anti-epileptics drugs.
 g. Anti-Parkinsonian Drugs.
 h. Analgesics, Antipyretics, Anti-inflammatory and Anti-gout drugs.
 i. Narcotic analgesics and antagonists.
 j. C.N.S. stimulants.
 k. Drug Addiction and Drug Abuse.

09 1503P PHARMACOLOGY – I (LAB) Credit : 2
L-T-P : 0-0-4

2. Experiments on intact preparations: Study of different routes of administration of drugs in mice/rats. To study the effect of hepatic microsomal enzyme inhibitors and induction on the phenobarbitone sleeping time in mice.
4. Effects of autonomic drugs on rabbit’s eye.
5. Effects of various agonists and antagonists and their characterization using isolated preparations like frog’s rectus abdominis muscle and isolated ileum preparations of rat, guinea pig and rabbit.

Recommended Books:
1. Essentials of Medical Pharmacology by K.D.Tripathy
2. Pharmacology and pharmacotherapeutics by Satoshkar and Bhandarkar
4. Text book of Pharmacology by S.D. Sethi
5. The Pharmacological basis of Therapeutics by Goodman and Gilman

09 1504 PHARMACOGNOSY - IV
Credit : 3

1. Systematic study of source, cultivation, collection, processing, commercial varieties, chemical constituents, substitutes, adulterants, uses, diagnostic macroscopic and microscopic features and specific chemical tests of following alkaloid containing drugs:
 a) Pyridine - piperidine: Tobacco, areca and lobelia.
 b) Tropane: Belladonna, hyoscyamus, datura, dudosia, coca and withania
 c) Quinoline and isoquinoline : Cinchona, ipecac, opium.
 d) Indole : Ergot, rauwolvia, catharanthus, nux-vomica and phystigma
 e) Imidazole: Pilocarpus
 f) Steroidal: Veratrum and kurchi
 g) Alkaloidal amine: Ephedra and colchicum.
 h) Glycoalkaloid: Solanum.
 i) Purines: Coffee, tea and cola.
2. Role of medicinal and aromatic plants in national economy.
3. Biological sources, preparation, identification tests and uses of the following enzymes: Diastase, papain, pepsin, trypsin, pancreatin.
5. Plant bitters and sweeteners.
6. Introduction, classification and study of different chromatographic methods and their applications in evaluation of herbal drugs.

09 1504P PHARMACOGNOSY - IV (LAB)
Credit : 2

i) Identification of crude drugs listed above.
ii) Microscopic study of characters of eight - selected drugs given in theory in entire and powdered form.
iii) Chemical evaluation of powdered drugs and enzymes.
iv) Chromatographic studies of some herbal constituents.

Recommended Books:
2. Trees G.E. and Evans W.C, Pharmacognosy (Balliene Tindall, Eastbourne)
4. Tyler V.E., Brady L.R. and Robbers J.E., Pharmacognosy (Len & Febiger, Philadelphia)

09 1505 PHARMACEUTICS - VI (Hospital Pharmacy)
Credit : 3

3. Drug Store Management and Inventory Control:
 (a) Organization of drug store, Types of materials stocked, storage conditions.
 (b) Purchase and Inventory Control principles, purchase procedures, Purchase order, Procurement and stocking.

4. Drug distribution Systems in Hospitals:
 (a) Out-patient dispensing, methods adopted.
 (b) Dispensing of drugs to in-patients, Types of drug distribution systems. Charging policy, labeling.
 (c) Dispensing of drugs to ambulatory patients.
 (d) Dispensing of controlled drugs.

5. Central Sterile Supply Unit and their Management: Types of materials for sterilization, packing of materials prior to sterilization, sterilization equipments, Supply of sterile materials.

7. Drug Information Services: Sources of Information on drugs, disease, treatment schedules, procurement of information, Computerized services (e.g., MEDLINE), Retrieval of information, Medication error.

8. Records and Reports: Prescription filling, drug profile, patient medication profile, cases on drug interaction and adverse reactions, idiosyncratic cases etc.

PHARMACEUTICS - VI (LAB)

1. Experiments based on sterilization of various types of materials used in Hospitals.

2. Practical's designed on the use of computers in Drug Information Centre, prescription filling, documentation of information on drug interaction.

3. Experiments to illustrate handling of radio pharmaceutical products, measurement of radioactivity.

Recommended Books:

1. Hospital Pharmacy-Hassan WE, Lec and Febiger Publication.

3. Remington: The Science & Practice of Pharmacy, Lippincott Williams & Wilkins.

PHARMACEUTICS - VII (Biopharmaceutics & Pharmacokinetics)

1. Introduction to Biopharmaceutics and Pharmacokinetics and their role in formulation development and clinical setting.

2. Biopharmaceutics:
 a) Passage of drugs across biological barrier (passive diffusion, active transport, facilitated diffusion and pinocytosis).
 b) Factors influencing absorption - Physicochemical, physiological and pharmaceutical.
 c) Drug distribution in the body, plasma protein binding.

3. Pharmacokinetics:
 a) Significance of plasma drug concentration measurement.
 b) Compartment model-Definition and Scope.
 c) Pharmacokinetics of drug absorption - Zero order and first order absorption rate constant using Wagner - Nelson and Loo- Reigelman method.
 d) Volume of distribution and distribution coefficient.
 e) Compartment kinetics - One compartment and two compartment models.
 f) Determination of pharmacokinetic parameters from plasma and urine data after drug administration by intravascular and oral route.
 g) Curve fitting (method of Residuals), regression procedures.
h) Clearance concept, Mechanism of renal clearance, clearance ratio, determination of renal clearance.
i) Extraction ratio, hepatic clearance, biliary excretion, Extrahepatic circulation.
j) Non-linear pharmacokinetics with special reference to one compartment model after intravenous drug administration, Michaelis Menten Equation, detection of non-linearity (Saturation mechanism).

4. Clinical Pharmacokinetics:
a) Definition and scope.
b) Dosage adjustment in patients with and without renal and hepatic failure.
c) Design of single dose bio-equivalence study and relevant statistics.
d) Pharmacokinetic drug interactions and their significance in combination therapy.

5. Bioavailability and bioequivalence:
a) Measures of bioavailability, C_{max}, t_{max}, and Area under the curve (AUC).
b) Design of single dose bioequivalence study and relevant statistics.
c) Review of regulatory requirements for conduction of bioequivalent studies.

09 1601P PHARMACEUTICS - VII (LAB)
L-T-P : 0-0-4 Credit : 2

1. Experiments designed for the estimation of various pharmacokinetic parameters with given data.
5. Statistical treatment of pharmaceutical data.

Recommended Books:
1. Biopharmaceutics and Pharmacokinetics by D.M. Brahman and Sunil B. Jaiswal
2. Fundamentals of Biopharmaceutics and Pharmacokinetics by V. Venkateswarulu
3. Biopharmaceutics and Clinical Pharmacokinetics by Notari
4. Biopharmaceutics and Clinical Pharmacokinetics by Gibaldi
5. Applied Biopharmaceutics and Pharmacokinetics by Shargel and Yu

09 1602 PHARMACEUTICAL CHEMISTRY – VI (Medicinal Chemistry - I)
L-T-P : 3-0-0 Credit : 3

1. Basic Principles of Medicinal Chemistry: Physico-chemical aspects (Optical, geometric and bioisosterism) of drug molecules and biological action, Drug-receptor interaction including transduction mechanisms.
2. Principles of Drug Design (Theoretic-aspects) : Traditional analog (QSAR) and mechanism based approaches (Introduction 00’ graph theory, applications of quantum mechanics, Computer Aided Drug Designing (CADD) and molecular modeling.
3. Synthetic procedures of selected drugs, mode of action, uses, structure activity relationship including physicochemical properties of the following classes of drugs:
 A. Drugs acting at synaptic and neuro-effector junction sites:
 i. Cholinergics and Anticholinesterases
 ii. Adrenergic drugs
 iii. Antispasmodic and anti ulcer drugs
 iv. Neuromuscular blocking agents.
 B. Autocoids
 i. Antihistamines
 ii. Eicosanoids
 iii. Analgesic-antipyretics, anti-inflammatory (non-steroidal) agents.
 C. Drugs affecting uterine motility
 i. Oxytocics (including oxytocin, ergot alkaloids and prostaglandins’ Biochemical approaches in drug designing wherever applicable should be discussed.

09 1602P PHARMACEUTICAL CHEMISTRY – VI (LAB)
L-T-P : 0-0-4 Credit : 2

2. Synthesis of selected drugs from the course content.
3. Spectral analysis of the drugs synthesized.
4. Establishing the pharmacopeial standards of the drugs synthesized.
5. Determination of partition coefficient, dissociation constant and molar refractivity of compounds for QSAR analysis.

Recommended Books:
PHARMACOGNOSY - V (Chemistry of Natural Products)

1. Chemical and spectral approaches to simple molecules of natural origin
2. Concept of stereoisomerism taking examples of natural products.
3. Chemistry, biogenesis and pharmacological activity of medicinally important monoterpenes, sesquiterpenes, diterpenes, and triterpenoids.
5. Glycosides: Chemistry and biosynthesis of digitoxin, digoxin, hecogenin, sennosides, diosgenin and sarasapogenin.
7. Chemistry and biogenesis of medicinally important lignans and quassanoids, flavonoids.
8. Chemistry and therapeutic activity of penicillin, streptomycin and tetracyclines.

PHARMACOGNOSY - V (LAB)

i) Laboratory experiments on isolation, separation, purification of various groups of chemical constituents of pharmaceutical significance.
ii) Exercises on paper and thin layer chromatographic evaluations of herbal drug constituents.

PHARMACOLOGY - II

1. Pharmacology of Cardiovascular System:
 a) Digitalis and cardiac glycosides.
 b) Antihypertensive drugs.
 c) Antianginal and Vasodilator drugs, including calcium channel blockers and beta adrenergic antagonists.
 d) Antiarrhythmic drugs.
 e) Antihyperlipidemic drugs.
 f) Drugs used in the therapy of shock.
2. Drugs Acting on the Hemopoietic System:
 a) Hematinics.
 b) Anticoagulants, Vitamin K and hemostatic agents.
 c) Fibrinolytic and anti-platelet drugs.
 d) Blood and plasma volume expanders.
3. Drugs acting on urinary system:
 a) Fluid and electrolyte balance
 b) Diuretics
4. Autocoids:
 a) Histamine, 5-HT and their antagonists.
 b) Prostaglandins, thromboxanes and leukotrienes.
 c) Pentagastrin, Cholecystokinin, Angiotensin, Bradykinin and Substance P.
5. Drugs Acting on the Respiratory System:
 a) Anti-asthmatic drugs including bronchodilators.
 b) Anti-tussives and expectorants.
 c) Respiratory stimulants.

PHARMACOLOGY – II (LAB)
1. Experiments on Isolated Preparations:
 a) To record the concentration response curve (CRC) of acetylcholine using rectus abdominis muscle preparation of frog.
 b) To study the effects of physostigmine and d-tubocurarine on the CRC of acetylcholine using rectus abdominis muscle preparation of frog.
 c) To record the CRC of 5-HT on rat fundus preparation.
 d) To record the CRC of histamine on guinea pig ileum preparation.
 e) To record the CRC of nor-adrenaline on rat anococcygeus muscle preparation.
 f) To record the CRC of oxytocin using rat uterus preparation.

2. Pharmacology of Cardiovascular System:
 a) To study the ionotropic and chronotropic effects of drugs on isolated frog heart.
 b) To study the effects of drugs on normal and hypodynamic frog heart.

3. Blood Pressure of anaesthetized Dog/Cat/Rat:
 To demonstrate the effects of various drugs on the B.P. and respiration including the Vasomotor Reversal of Dale and nicotinic action of acetylcholine.

Recommended Books:
1. Essentials of Medical Pharmacology by K.D.Tripathy
2. Pharmacology and pharmacotherapeutics by Satoshkar and Bhandarkar
4. Text book of Pharmacology by S.D. Sethi
5. The Pharmacological basis of Therapeutics by Goodman and Gilman

09 1605 PHARMACEUTICAL ANALYSIS - III

A. Quality assurance:
 1. GLP, ISO 9000, TQM, Quality Review and Quality Documentation.
 2. Regulatory control, regulatory drug analysis, interpretation of analytical data.
 3. Validation, quality audit: quality of equipment, validation of equipment, validation of analytical procedures.

B. The theoretical aspects, basic instrumentation, elements of interpretation of spectra, and applications of the following analytical techniques should be discussed:
 1. Ultraviolet and visible spectrophotometry
 2. Fluorimetry.
 3. Infrared spectrophotometry.
 4. Nuclear Magnetic Resonance spectroscopy including 13c NMR.
 6. Flame Photometry.
 7. Emission Spectroscopy.

09 1605P PHARMACEUTICAL ANALYSIS – III (LAB)

1. Quantitative estimation of at least ten formulations containing single drug or more than one drug, using instrumental techniques.
2. Estimation of Na+, K+, Ca++ ions using flame photometry.
3. IR of samples with different functional groups (-COOH, -COOR, - CONHR, - NH2, -NHR, -OH, etc.).
4. Workshop to interpret the structure of simple organic compounds using UV, IR, NMR and MS.

Recommended Books:
1. Vogel’s Text Book of Quantitative Chemical Analysis
2. Instrumental methods of Chemical Analysis by B.K. Sharma
3. Instrumental methods of Analysis by Willard Den & Merrit
4. Practical Pharmaceutical Chemistry by Beckette and Sten Lake Vol. 2
5. Text Book of Pharmaceutical Analysis by Conner
SEMESTER - VII

09 1701 PHARMACEUTICS - VIII (Pharmaceutical Technology II)
L-T-P : 3-0-0 Credit : 3

1. **Capsules**: Advantages and disadvantages of capsule dosage form, material for production of hard gelatin capsules, size of capsules, method of capsule filling, soft gelatin, capsule shell and capsule content, importance of base absorption and minimum/gm factors in soft capsules, quality control, stability testing and storage of capsule dosage forms.

2. **Micro-encapsulation**: Types of microcapsules, importance of microencapsulation in pharmacy, microencapsulation by phase separation, coacervation, multi orifice, spray drying, spray congealing, polymerization complex emulsion, air suspension technique, coating pan and other techniques, evaluation of micro capsules.

3. **Tablets**:
 a) Formulation of different types of tablets, granulation, technology on large-scale by various techniques, physics of tablets making, different types of tablet compression machinery and the equipments employed, evaluation of tablets.
 b) Coating of Tablets: Types of coating, film forming materials, formulation of coating solution, equipments for coating, coating process, evaluation of coated tablets.
 c) Stability kinetics and quality assurance.

4. **Parenteral Products**:
 a) Preformulation factors, routes of administration, water for injection, pyrogenicity, non aqueous vehicles, isotonicity and methods of its adjustment.
 b) Formulation details, containers and closures and selection.
 c) Prefilling treatment, washing of containers and closures, preparation of solution and suspensions, filling and closing of ampoules, vials, infusion fluids, lyophilization & preparation of sterile powders, equipment for large scale manufacture and evaluation of parenteral products.
 d) Aseptic Techniques-source of contamination and methods of prevention, Design of aseptic area, Laminar flow bench services and maintenance.
 e) Sterility testing of pharmaceuticals.

5. **Surgical products**: Definition, primary wound dressing, absorbents, surgical cotton, surgical gauzes etc. Bandages, adhesive tape, protective cellulosic hemostatics, official dressings, absorbable and nonabsorbable sutures, ligatures and catguts. Medical prosthetics and organ replacement materials.

09 1701P PHARMACEUTICS - VIII (LAB)
L-T-P : 0-0-4 Credit : 2

1. Experiments to illustrate preparation, stabilization, physical & biological evaluation of pharmaceutical products like powders, capsules, tablets, parenterals, micro capsules, surgical dressing etc.

2. Evaluation of materials used in pharmaceutical packaging.

Recommended Books:

1. Bently's Textbook of pharmaceutics by E.A. Rawlins (All India Traveller Book Seller, New Delhi)
2. The Theory and Practice of Industrial Pharmacy by Lachmann, Libermann and Kanig (Varghese Pub. House, Bombay)
4. REMINGTON : The Science and Practice of Pharmacy, (Lippincott Williams & Wilkins, Baltimore)
5. Pharmaceutics : The Science of Dosage Form Design by Aulton (Churchill Livingstone, Edinburgh)

09 1702 PHARMACOLOGY - III
L-T-P : 3-0-0 Credit : 3

1. Drugs Acting on the Gastrointestinal Tract:
 a) Antacids, Anti Secretory and Anti-ulcer drugs.
 b) Laxatives and anti diarrhoeal drugs.
 c) Appetite Stimulants and Suppressants.
 d) Emetics and anti-emetics.
 e) Miscellaneous-Carminatives, demulcents, protectives, adsorbents, astringents, digestants, enzymes and...
mucolytics.

2. Pharmacology of Endocrine System:
 a) Hypothalamic and pituitary hormones.
 b) Thyroid hormones and anti thyroid drugs, parathormone, calcitonin and Vitamin D.
 c) Insulin, oral hypoglycaemic agents & glucagon.
 d) ACTH and corticosteroids.
 e) Androgens and anabolic steroids.
 f) Estrogens, progesterone and oral contraceptives.
 g) Drugs acting on the uterus.

3. Chemotherapy:
 a) General Principles of Chemotherapy.
 b) Sulfonamides and cotrimoxazole.
 c) Antibiotics - Penicillins, Cephalosporins, Chloramphenicol Erythromycin, Quinolones and Miscellaneous Antibiotics.
 d) Chemotherapy of tuberculosis, leprosy, fungal diseases, viral diseases, urinary tract infections and sexually transmitted diseases.
 e) Chemotherapy of malignancy and Immunosuppressive Agents.

4. Principles of Toxicology:
 a) Definition of poison, general principles of treatment of poisoning with particular reference to barbiturates, opioids, organophosphorous and atropine poisoning.
 b) Heavy metals and heavy metal antagonists.

09 1702P PHARMACOLOGY - III (LAB)
L-T-P : 0-0-4 Credit : 2

1. Experiments on Isolated Preparations:
 a) To calculate the pA2 value of atropine using acetylcholine as an agonist on rat ileum preparation.
 b) To calculate the pA2 value of mepyramine or chlorpheniramine using histamine as agonist on guinea pig ileum.
 c) To estimate the strength of the test sample of agonist/drug (e.g. Acetylcholine, Histamine, 5-HT, Oxytocin, etc) using a suitable isolated muscle preparation employing Matching bioassay, Bracketing assay, Three point assay and Four point bioassay.

2. Pharmacology of the Gastrointestinal Tract: To study the Anti-secretary and anti-ulcer activity using pylorus.

3. Clinical pharmacology: To determine the effects of certain clinically useful drugs on human volunteers like:
 (a) Antihistaminics
 (b) Anti-anxiety and sedative drugs
 (c) Analgesics
 (d) Beta blockers.

Recommended Books:
1. Essentials of Medical Pharmacology by K.D.Tripathy
2. Pharmacology and pharmacotherapeutics by Satoshkar and Bhandarkar
4. Text book of Pharmacology by S.D. Sethi
5. The Pharmacological basis of Therapeutics by Goodman and Gilman

09 1703 PHARMACEUTICAL CHEMISTRY - VII (Medicinal Chemistry - II)
L-T-P : 3-0-0 Credit : 3

Synthetic procedures of selected drugs, mode of action, uses, structure activity relationship including Physico-Chemical properties of the following classes of drugs.
2. Drugs acting on the Central Nervous System: General Anesthetics, Local Anesthetics, Hypnotics and Sedatives, Opioid analgesics, antitussives, anti convulsants, Antiparkinsonism drugs, CNS stimulants, Psychopharmacological agents (neuroleptics, antidepressants, anxiolytics).
3. Diuretics, Cardiovascular drugs, Anticoagulant and Antiplatelet drugs.
Biochemical approaches in drug designing wherever applicable should be discussed.

09 1703P PHARMACEUTICAL CHEMISTRY - VII (LAB)
L-T-P : 0-0-4 Credit : 2

1. Workshop on stereomodel use of some selected drugs.
2. Synthesis of selected drugs from the course content involving two or more steps and their spectral analysis.
3. Establishing the Pharmacopoeial standards of the drugs synthesized.

Recommended Books:
3. A Text Book of Medicinal Chemistry by S.N.Pandeya.
5. Bentley’s and Driver’s Text Book of Pharmaceutical Chemistry.

09 1704 PHARMACEUTICAL BIOTECHNOLOGY
L-T-P : 3-0-0
Credit : 3

1. Immunology and Immunological Preparations: Principles, antigens and haptns, immune system, cellular humorai immunity, immunological tolerance, antigen-antibody reactions and their applications. Hypersensitivity, Active and passive immunization, Vaccines- their preparation, standardization and storage.
2. Genetic Recombination: Transformation, conjugation, transduction, protoplast fusion and gene cloning and their applications. Development of hybridoma for monoclonal antibodies. Study of drugs produced by biotechnology such as Activase, Humulin, Humatrope, HB etc.
3. Antibiotics: Historical development of antibiotics. Antimicrobial spectrum and methods used for their standardization. Screening of soil for organisms producing antibiotics, fermenter, its design, control of different parameters. Isolation of mutants, factors influencing rate of mutation. Design of fermentation process. Isolation of fermentation products with special reference to penicillins, streptomycins tetracyclines and vitamin B12.
5. Enzyme immobilization: Techniques of immobilization, factors affecting enzyme kinetics. Study of enzymes such as hyaluronidase, penicillinase, streptokinase and streptodornase, amylases and proteases etc. Immobilization of bacteria and plant cells.

Recommended Books:
1. Industrial Microbiology by Casida.
2. Industrial Microbiology by A.H. Patel.
3. Industrial microbiology by Prescott and Dunn.
4. Pharmaceutical Biotechnology by Vyasa and Dixit.
5. Molecularbiology and Genetic Engineering by A.M.Narayanan, A.M.Selvaraj, A.Mani
6. Text Book of Microbiology by Anantanarayana and Panicker.
8. Molecular Biotechnology by Glick.

09 1705 PHARMACEUTICAL INDUSTRIAL MANAGEMENT
L-T-P : 3-0-0
Credit : 3

3. Economics: Principles of economics with special reference to the laws of demand and supply, demand schedule, demand curves, labor welfare, general principles of insurance and inland and foreign trade, procedure of exporting and importing goods.
4. Pharmaceutical Marketing: Functions, buying, selling, transportation, storage, finance, feedback, information, channels of distribution, wholesale, retail, departmental store, multiple shop and mail order business.
5. Salesmanship: Principles of sales promotion, advertising, ethics of sales, merchandising, literature, detailing. Recruitment, training, evaluation, compensation to the pharmacist.
6. Market Research:
Market Segmentation & Market Targeting.

Materials Management: A brief exposure or basic principles of materials management-major areas, scope, purchase, stores, inventory control and evaluation of materials management.

Recommended Books:

Elective Theory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>L-T-P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 1706</td>
<td>Elective Theory</td>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Practical

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>L-T-P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 1706P</td>
<td>Elective Practical</td>
<td>0-0-4</td>
<td>2</td>
</tr>
</tbody>
</table>

SEMESTER - VIII

PHARMACEUTICS - IX (Dosage Form Design)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>L-T-P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 1801</td>
<td>PHARMACEUTICS - IX (Dosage Form Design)</td>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Preformulation studies:
 a) Study of physical properties of drug like physical form, particle size, shape, density, wetting dielectric constant. Solubility, dissolution and organoleptic property and their effect on formulation, stability and bioavailability.
 b) Study of chemical properties of drugs like hydrolysis, oxidation, reduction, racemization, polymerization etc., and their influence on formulation and stability of products.
 c) Study of pro-drugs in solving problems related to stability, bioavailability and elegance of formulations.
2. Design, development and process validation methods for pharmaceutical operations involved in the production of pharmaceutical products with special reference to tablets, suspensions.
3. Stabilization and stability testing protocol for various pharmaceutical products.
4. Performance evaluation methods
 a) In-vitro dissolution studies for solid dosage forms methods, interpretation of dissolution data.
 b) Bioavailability studies and bioavailability testing protocol and procedures.
 c) In-vivo methods of evaluation and statistical treatment.
 d) GMP and quality assurance, Quality audit.
 e) Design, development, production and evaluation of controlled released formulations.

PHARMACEUTICS - IX (LAB)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>L-T-P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 1801P</td>
<td>PHARMACEUTICS - IX (LAB)</td>
<td>0-0-4</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Preformulation studies including drug-excipient compatibility studies, effect of stabilizers, preservatives etc. in dosage form design.
2. Experiments demonstrating improvement in bioavailability through prodrug concept.
3. Stability evaluation of various dosage forms and their expiration dating.
4. Dissolution testing and data evaluation for oral solid dosage forms.
6. In-vivo bioavailability evaluation from plasma drug concentration and urinary excretion curves.
7. Design, development and evaluation of controlled release formulations.

Recommended Books:
1. Bently’s Textbook of pharmaceutics edited by E.A. Rawlins (All India Traveller Book Seller, New Delhi)
2. The Theory and Practice of Industrial Pharmacy by Lachmann, Libermann and Kanig (Varghese Pub. House, Bombay)
4. REMINGTON : The Science and Practice of Pharmacy, (Lippincott Williams & Wilkins, Baltimore)
5. Pharmaceutics : The Science of Dosage Form Design by Aulton (Churchill Livingstone, Edinburgh)

PHARMACEUTICAL CHEMISTRY – VIII (Medicinal Chemistry III)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>L-T-P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 1802</td>
<td>PHARMACEUTICAL CHEMISTRY – VIII (Medicinal Chemistry III)</td>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>
2. Synthetic procedures of selected drugs, mode of action, uses, structure activity relationship (including physicochemical aspects) of the following classes of drugs. (Biochemical approaches in drug designing wherever applicable should be discussed).
 a) Antimetabolites (including sulfonamides).
 b) Chemotherapeutic agents used in Protozoal, Parasitic and other infection.
 c) Antineoplastic agents.
 d) Anti-viral including anti - HIVagents.
 e) Immunosuppressives and immunostimulants.
3. Amino acids, peptide, nucleotides and related drugs.
 a) Thyroid and Anti thyroid drugs.
 b) Insulin and oral hypoglycaemic agents.
 c) Peptidomimetics and nucleotidomimetics.
 d) Diagnostic agents.
 e) Pharmaceutical Aids.

09 1802P PHARMACEUTICAL CHEMISTRY – VIII (LAB)
L-T-P : 0-0-4 Credit : 2

1. Experiments designed on drug metabolism:
 a) Preparation of S9 and microsomes from tissue homogenates and standardization of protein.
 b) Effect of phenobarbital pretreatment on microsomal cytochrome p-450, cytochrome b5, and NADPH-Cytochrome C-reductase and comparison of microsomes from control.
 c) Determination of microsomal aminopyrine demethylase and p- nitroanisole o-demethylase activities.
 d) Determination of microsomal azo- and nitroreductase activities.
2. Synthesis of selected drugs.
3. Establishing the pharmacopoeal standards and spectral studies.

Recommended Books:
3. A Text Book of Medicinal Chemistry by S.N.Pandeya.
5. Bentley’s and Driver’s Text Book of Pharmaceutical Chemistry.

09 1803 PHARMACOGNOSY - VI
L-T-P : 3-0-0 Credit : 3

1. World-wide trade in medicinal plants and derived products with special reference to diosgenin (disocorea), taxol (Taxus sps) digitals, tropane alkaloid containing plants, Papain, cinchona, Ipecac, Liquorice, Ginseng, Aloe, Valerian, Rauwolfia and plants containing laxatives.
2. A brief account of plant based industries and institutions involved in work on medicinal and aromatic plants in India. Utilization and production of phytoconstituents such as quinine, calcium sennosides, podophyllotoxin, diosgenin, solasodine, and tropane alkaloids.
3. Utilization of aromatic plants and derived products with special reference to sandalwood oil, mentha oil, lemon grass oil, vetiver oil, geranium oil and eucalyptus oil.
5. Chemotaxonomy of medicinal plants.
7. Natural allergens and photosensitizing agents and fungal toxins.
8. Herbs as health foods.
9. Herbal cosmetics.

09 1803P PHARMACOGNOSY – VI (LAB)
L-T-P : 0-0-4 Credit : 2

i. Isolation of some selected phytoconstituents studied in theory.
ii. Extraction of volatile oils and their chromatographic profiles.
iii. Some experiments in plant tissue culture.

Recommended Books:
2. Trease G.E. and Evans W.C., Pharmacognosy (Balliene Tindall, Eastbourne)
4. Tyler V.E., Brady L.R. and Robbers J.E., Pharmacognosy (Len & Febiger, Philadelphia)

09 1804 PHARMACOLOGY – IV (Clinical Pharmacy and Drug Interactions)
L-T-P : 3-0-0 Credit : 3

1. Introduction to Clinical Pharmacy.
2. Basic Concepts of Pharmacotherapy.
 a) Clinical Pharmacokinetics and individualization of Drug Therapy.
 b) Drug Delivery Systems and their Biopharmaceutic & Therapeutic Considerations.
 c) Drug Use During Infancy and in the Elderly (Pediatrics & Geriatrics).
 d) Drug use during Pregnancy.
 e) Drug induced Diseases.
 g) General Principles of Clinical Toxicology.
 h) Interpretation of Clinical Laboratory Tests.
3. Important Disorders of Organ Systems and their Management:
 a) Cardiovascular Disorders-Hypertension, Congestive Heart Failure, Angina, Acute Myocardial Infarction, Cardiac arrhythmias.
 b) CNS Disorders: Epilepsy, Parkinsonism, Schizophrenia, Depression.
 c) Respiratory Disease-Asthma.
 d) Gastrointestinal Disorders-Peptic ulcer, Ulcerative colitis, Hepatitis, Cirrhosis.
 e) Endocrine Disorders-Diabetes mellitus and Thyroid Disorders.
 f) Infectious Diseases-Tuberculosis, Urinary Tract Infection, Enteric Infections, Upper Respiratory Infections.
 g) Hematopoietic Disorders-Anemias.
 h) Joint and Connective Tissue Disorders-Rheumatic Diseases, Gout and Hyperuricemia.
4. Therapeutic Drug Monitoring
5. Concept of Essential Drugs and Rational Drug use.

Recommended Books:
1. Remington the Science and Practice of Pharmacy
2. Clinical Pharmacology by Laurence, Bennett and Brown
3. Medical diagnosis and treatment by Tierney, Mc phee and Papadakis
5. Clinical Pharmacy and Therapeutics by Herfindal, Gourley and Lloyd Hart.
6. Physiological basis of Medical Practice by John B. West
7. Drug Interactions by Ivan Stockley

09 1805P Project Work and Viva - voce
L-T-P : 0-0-12 Credit : 10

ELECTIVES (To be chosen one each against papers 09 1706 and 09 1706P)

09 17E1 COSMETIC TECHNOLOGY
L-T-P : 3-0-0 Credit : 3

UNIT -I
UNIT -II
2. Stability aspects of cosmetics: Shelf-life, effects of environmental factors like light, temperatures etc on product stability.
3. Quality control tests of different cosmetic products, Packaging of Cosmetics
UNIT -III
4. Hair Care Products: Hair structure, Shampoos, Conditioners, Setting lotion, Hair creams, Hair dyes.
5. Skin Care Products: Anatomy and physiology of skin, formulation of skin cleaners, moisturizers, sunscreen products, acne products, anti ageing creams.
UNIT -IV

09 17E1P COSMETIC TECHNOLOGY (LAB)
L-T-P : 0-0-4 Credit : 2

1. Preparation of selected cosmetic preparations representing the following classes:
 a) Shampoos
 b) Hair conditioners
 c) Hair creams
 d) Skin creams
 e) Nail polish
 f) Face powders
 g) Tooth pastes
 h) Tooth powder
 i) Shaving cream
 j) After shave lotion

2. Evaluation of any two products mentioned above
3. Collection of various packaging materials used for cosmetics and their description
 (Each student shall collect at least 10 different types of containers.)

Recommended books:
1. Cosmetics: Formulation, manufacturing, and Quality control by P.P.Sharma
2. A Handbook of Cosmetics by B.M. Mithal, R.N. Saha
3. The Theory and Practice of Industrial Pharmacy by Lachman L., Liberman, H.A.
4. Modern Cosmetics by Thomson, E.G.
5. Paucher’s Perfumes, cosmetics & soaps by W.A.Paucher.

09 17E2 HERBAL DRUG TECHNOLOGY
L-T-P : 3-0-0 Credit : 3

UNIT -I
Definition of Herbal drug, Importance of Herbal therapies, Herbal verses conventional drugs, Safety in herbal drugs, Toxicity in Herbals and their interactions.

UNIT -II
Herbs used as nutraceuticals and healing agents Herbal cosmetics.

UNIT -III
Making and using herbal medicines for common ailments like cold, skin infections and diarrhoea.
Analytical Profiles of selected herbs- Brahmi Aradgraphis paniculata, Aegle marmelos and Gymnema sylvestre.

UNIT -IV
Quality Control and Quality Assurance of Herbal ingredients as per W.H.O. guidelines.
Determination of tannins, Ash value, Extractable matter and Pesticide residues.

09 17E2P HERBAL DRUG TECHNOLOGY (LAB)
L-T-P : 0-0-4 Credit : 2

1. Identification of sugar from plant extracts
2. Preparation of plant extracts and their standardization by analytical profiles (any five)
3. Quality Control tests for raw materials used in Herbal preparation

Recommended books:
1. Trase and Evan’s Pharmacognosy 15th edition
2. Indian Herbal Pharmacopeia Vol-I and II
4. Quality Control of Herbal drugs by Dr. Pulak K. Mukherjee
6. Herbal drugs by P.Mukherjee

09 17E3 BIOASSAYS
L-T-P : 3-0-0 Credit : 3
UNIT -I
Definition, principles, and design of Bioassays.
Requirements applications, importance advantages and disadvantages of Bioassays

UNIT -II
Types of Bioassay (quantal and graded response Bioassys), Bioassay of agonists and antagonists, Biological variation, Biological standardization, Microbiological assay (antibiotics, vitamin B12), Bioassay in Humans

UNIT -III
Bioassay of some important drugs like Digitalis, Adrenaline, Noradrenaline, acetylcholine, Histamine, 5-hydroxy tryptamine, d-tubocurarine, Heparin, antibiotics, Vitamin-D

UNIT -IV
Bioassay of Insulin, Oxytocin, Vassopressin, Growth Hormone, FSH, LH, Prolactin, Thyrotrophin, Corticotrophin, Androgen, Progesterone, Estrogen.

09 17E3P BIOASSAYS (LAB)

1. To find out the strength of the given sample of acetylcholine by comparative bioassay using rectus abdominis muscle of frog.
2. To find out the strength of the given sample of acetylcholine by interpolation bioassay using rectus abdominis muscle of frog.
3. To find out the strength of the given sample of acetylcholine by three-point bioassay using rectus abdominis muscle of frog.
4. To find out the strength of the given sample of acetylcholine by four-point bioassay using rectus abdominis muscle of frog.
5. To find out the strength of the given sample of d-tubocurarine by graphical bioassay using rectus abdominis muscle of frog.
6. To find out the strength of the given sample of acetylcholine by four-point bioassay using guinea pig ileum.
7. To find out the strength of the given sample of histamine by four-point bioassay using guinea pig ileum.
8. To find out the strength of the given sample of oxytocin by four-point bioassay using rat uterus.
9. To find out the strength of the given sample of 5-hydroxy tryptamine by four-point bioassay using rat fundus.
10. To find out the strength of the given sample of 5-hydroxy tryptamine by comparative bioassay using rat fundus.

Recommended books:
1. Sharma, H.L.; Sharma, K.K. General Pharmacology Basic Concepts
2. Barar, F.S.K. Essentials of Pharmacotherapeutics
4. Satoshkar, R.S.; Bhandarkar, S.D.; Ainapure, S.S. Pharmacology and Pharmacotherapeutics
5. Sharma, V.N. Essentials of Pharmacology
6. Derasari and Gandhi's Elements of Pharmacology
7. Remington's Pharmaceutical Sciences
8. Indian Pharmacopeia
9. Pillai, K.K. Experimental Pharmacology

09 17E4 HOSPITAL PHARMACY ADMINISTRATION

UNIT -I
1. The role of hospital pharmacy department and its relationship to other hospital departments and staff.
2. Hospital drug policy - Drug Committee, formulary and guidelines, other hospital committees such as infection control committee and research & ethics committee.

UNIT -II
3. Hospital Pharmacy management - Staff (Professional and non-professional), Materials (drugs, non-drugs consumables), Financial (drug budget, cost centers), planning infrastructure requirements (building, furniture and fitting, specialized Equipment, maintenance and repairs), Work load statistics, Hospital formulary.
4. Organization of Hospital Pharmacy Services

UNIT -III
5. Drug Distribution: Purchasing, warehousing (Storage conditions, expiry date control, recycling of drugs, stock-taking, drug recalls), Drug distribution methods (ward stock, individual patient dispensing, unit doses), specific requirements for inpatients, causality / emergency theatre, ICU/ICCU, Drugs of dependence.

UNIT -IV
6. Manufacturing: Sterile and non sterile production, including total parenteral nutrition, IV additive service, Pre-Packing and labeling Quality control.
1. Experiments based on sterilization of various types of materials used in Hospitals.
2. Practicals designed on the use of computers in Drug information Centre.
3. Prescription filling documentation of information of drug interaction.
4. Manufacture of LVP used in hospitals.
5. Observing Drug distribution pattern in a local hospital and writing report.
6. Any other experiments to Substantiate theory.

Recommended books:
3. Avery's Drug Treatment, 4th edition, Adis international limited

UNIT-I
1. Theory, instrumentation and applications of the following Instrumental Methods of Analysis.
 (i) X-ray fluorescence spectrometry
 (ii) X-ray diffraction
 (iii) Electron spin resonance spectroscopy (ESR)
 (iv) Advanced chromatographic techniques like super critical fluid chromatography, size exclusion chromatography.
 (v) Differential scanning calorimetry, Differential thermal analysis and Thermal gravimetric analysis,

UNIT - II
2. Theory and procedure involved in the qualitative and quantitative analysis of pharmaceutical properties and dosage forms containing the following drugs: (Biological and microbiological method excluded).
 ➢ NSAID - Analgesics and antipyretics (Diclofenac sodium, Ketopron, Oxyphebebutazone, Paracetamol, Allopurinol, Aspirin + Caffeine)
 ➢ Barbiturates (Phenobarbitone sodium)
 ➢ Steroids (Nandrolone, Cortisone acetate, Fludrocortisone acetate, Prednisolone, Dexamethasone)
 ➢ Antihistaminics (Mepyramine maleate, Chlorpheniramine maleate, promethazine hydrochloride, Cyclazone hydrochloride, Astemizole)
 ➢ Alkaloids (Codeine, Opium, Vincristine, Ergotamine and Ergometrine)

UNIT - III
3. Theory and procedure involved in the qualitative and quantitative analysis of pharmaceutical properties and dosage forms containing the following drugs: (Biological and microbiological method excluded).
 ➢ Antibiotics (Cycloserine, Chloramphenicol, Ampicillin, Rifampicin, Cefotaxim sodium)
 ➢ Vitamins (Riboflavin, Nicotinamide, Pyridoxine hydrochloride, Folic acid, Cyanocobalamine)
 ➢ Cardiovascular agents (Digoxin, Isosorbide dinitrate, nifedipine, Verapamil hydrochloride, Propranolol hydrochloride, Timolol maleate, Atenolol)
 ➢ Hypoglycaemic agents (Insulin and its different forms, Chlorpropamide, glibenclamide, Metformine)
 ➢ Sulphonamides (Sulphadiazine, Sulphamethoxazole, Sulphacetamide)

UNIT - IV
4. Theory and procedure involved in the qualitative and quantitative analysis of pharmaceutical preparations and dosage forms using the following reagents / reactions.
 (i) Diazotisation followed by coupling.
 (ii) Oxidation followed by complexation.
 (iii) Condensation reactions using the reagents Para Dimethyl Amino Benzaldehyde (PDAB), Folin’s reagent, Gibb’s reagent and para Dimethyl Amino Cinnamaldehyde (PDAC) reagent.

UNIT - IV

1. Estimation of following classes of drugs using different analytical methods.
 ➢ NSAID - Analgesics and Antipyretics.
 ➢ Barbiturates.
 ➢ Sulphonamides.
 ➢ Antibiotics.
- Steroidal hormones
- Vitamins
- Alkaloids
- Cardiovascular drugs
- Hypoglycaemic agents
- Antihistaminics

2. Estimation of different classes of drugs using the following reagents.
 - Feric chloride.
 - Perchloric acid.
 - 2-6 Dichlorophenol indophenol.

Recommended books:
1. Instrumental methods of analysis by Scoog and West.
2. Chemical Analysis - Modern Instrumentation methods and techniques by Wiley.
5. A text book of Pharmaceutical analysis by K.A.Conners (John Wiley)
7. IP. BP. & USP.
Introduction: India is the largest producer of milk in the world, producing 94 million tones of milk annually. There are 678 milk processing plants in the country requiring a large human resource pool to run these dairies. With the introduction of modern technology in the production and processing of dairy products, the concept of milk is shifting towards value-added dairy business. The milk production in the country is increasing at 4% per annum, contributing more than Rs. 1,00,000 crore to GDP. In split of large infrastructure available for processing milk, only 15% of milk is at present processed in the organized sector, hence there is lot of scope for value addition and export in Dairy sector.

The dairy industries have opened up new avenues for employment & economy. It is estimated that dairy industries are generating new jobs to the extent of 1.04 lakhs every year. Dairy sector is further expected to grow faster and generate more employment in the near future. Adoption of latest & advanced dairy and value addition technology in milk processing can minimize losses, provide better quality, nutrition, and more employment opportunity. Dairy technologies offer promising options for value addition and resource recovery in terms of consumer food availability and simultaneously more earning at farmers and industries level. There is a large scope for milk industries to grow in view of globalization and increasing purchasing power of consumers. This will further increase the requirement of dairy technologist and researchers.

The existing course curricular of B.Tech (Dairy Technology), is a unique job oriented degree, which leads to a total development of graduates and make them capable to face various situations in very field of work. Students are also enriched with entrepreneurial qualities to start their own industries. Additionally, the graduates get acquainted with various facts of professionally manages industries which include production management, raw material purchases, personnel management, sales and marketing by virtue of industrial implant training. This helps students to acquire confidence to work as highly professional human resource for dairy industries.

Mission

Development of highly professional dairy specialists through value based education, research and training in dairy technology for meeting technological and societal needs.

Objective

- Offering under graduate and post graduate education in dairy technology.
- Teaching research and development in the various aspects of dairy technology discipline.
- Transfer of technology for employment generation and entrepreneurship development in milk processing.
- Advisory and consultancy service to industries and users.
Semester wise Courses

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Title</th>
<th>Course No.</th>
<th>Credit</th>
<th>Contact Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Physical Chemistry of Milk</td>
<td>DTC-111</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>2.</td>
<td>Milk Production Management & Dairy Development</td>
<td>DBM-111</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>3.</td>
<td>Engineering Drawing</td>
<td>DTE-111</td>
<td>2(0+2)</td>
<td>0+4</td>
</tr>
<tr>
<td>4.</td>
<td>Workshop Practice</td>
<td>DTE-112</td>
<td>2(1+1)</td>
<td>1+2</td>
</tr>
<tr>
<td>5.</td>
<td>Fluid Mechanics</td>
<td>DTE-113</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>6.</td>
<td>Economic Analysis</td>
<td>DBM-112</td>
<td>2(2+0)</td>
<td>2+0</td>
</tr>
<tr>
<td>7.</td>
<td>Fundamental of Microbiology</td>
<td>DTM-111</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>8.</td>
<td>Environmental Studies</td>
<td>DBM-113</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>21(13+8)</td>
<td>29(13+16)</td>
</tr>
<tr>
<td>Optional Courses: (I). Organic Chemistry (II). Industrial Statistics</td>
<td>DTC-112 DBM-114</td>
<td>3(2+1) NC Do</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Title</th>
<th>Course No.</th>
<th>Credit</th>
<th>Contact Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Market Milk</td>
<td>DTT-121</td>
<td>4(3+1)</td>
<td>3+2</td>
</tr>
<tr>
<td>2.</td>
<td>Introductory Microbiology</td>
<td>DTM-121</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>3.</td>
<td>Heat & Mass Transfer</td>
<td>DTE-121</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>4.</td>
<td>Chemistry of Milk</td>
<td>DTC-121</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>5.</td>
<td>Thermodynamics</td>
<td>DTE-122</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>6.</td>
<td>Electrical Engineering</td>
<td>DTE-123</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>7.</td>
<td>Biochemistry & Human Nutrition</td>
<td>DTC-122</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>8.</td>
<td>Computer Programming</td>
<td>DBM-121</td>
<td>3(1+2)</td>
<td>1+4</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>25(16+9)</td>
<td>34(16+18)</td>
</tr>
</tbody>
</table>

Semester -III
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Description</th>
<th>Code</th>
<th>Credits</th>
<th>Elective Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Traditional Dairy Products</td>
<td>DTT-211</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>2.</td>
<td>Ice –Cream & Frozen Deserts</td>
<td>DTT-212</td>
<td>4(2+2)</td>
<td>2+4</td>
</tr>
<tr>
<td>3.</td>
<td>Fat Rich Dairy products</td>
<td>DTT-213</td>
<td>4(3+1)</td>
<td>3+2</td>
</tr>
<tr>
<td>4.</td>
<td>Refrigerator and Air Conditioning</td>
<td>DTE-211</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>5.</td>
<td>Starter Culture & Fermented Milk Products</td>
<td>DTM-211</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>6.</td>
<td>Dairy Engineering</td>
<td>DTE-212</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>7.</td>
<td>Food Chemistry</td>
<td>DTC-211</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>8.</td>
<td>Marketing Management & International Trade</td>
<td>DMM-211</td>
<td>2(2+0)</td>
<td>2+0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>25(17+8)</td>
<td>33(17+16)</td>
</tr>
<tr>
<td>Semester V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Food Technology 1</td>
<td>DTT-221</td>
<td>4(3+1)</td>
<td>3+2</td>
</tr>
<tr>
<td>2.</td>
<td>Condensed & Dried Milks</td>
<td>DTT-222</td>
<td>5(3+2)</td>
<td>3+4</td>
</tr>
<tr>
<td>3.</td>
<td>By Products Technology</td>
<td>DTT-223</td>
<td>4(3+1)</td>
<td>3+2</td>
</tr>
<tr>
<td>4.</td>
<td>Dairy Process Engineering</td>
<td>DTE-221</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>5.</td>
<td>Packaging of Dairy Products</td>
<td>DTT-224</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>6.</td>
<td>Operation Research</td>
<td>DBM-221</td>
<td>2(2+0)</td>
<td>2+0</td>
</tr>
<tr>
<td>7.</td>
<td>Dairy Extension Education</td>
<td>DBM-22</td>
<td>2(1+1)</td>
<td>1+2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>23(16+7)</td>
<td>30(16+14)</td>
</tr>
<tr>
<td>Semester VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>IT in Dairy Industries</td>
<td>DBM-311</td>
<td>2(1+1)</td>
<td>1+2</td>
</tr>
<tr>
<td>2.</td>
<td>Cost Accounting</td>
<td>DBM-312</td>
<td>2(2+0)</td>
<td>2+0</td>
</tr>
<tr>
<td>3.</td>
<td>Dairy Biotechnology</td>
<td>DTM-311</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>4.</td>
<td>Cheese Technology</td>
<td>DTT-311</td>
<td>5(3+2)</td>
<td>3+4</td>
</tr>
<tr>
<td>5.</td>
<td>Instrumentation & Process Control</td>
<td>DTE-311</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>6.</td>
<td>Quality & Safety monitoring in Dairy Industry</td>
<td>DTM-312</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>7.</td>
<td>Principle of Dairy Machine Design</td>
<td>DTE-312</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>8.</td>
<td>Food Technology</td>
<td>DTt-312</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>24(16+8)</td>
<td>32(16+16)</td>
</tr>
</tbody>
</table>

Semester VI

<table>
<thead>
<tr>
<th>Semester VI</th>
<th>Course Description</th>
<th>Code</th>
<th>Credits</th>
<th>Elective Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Financial Management</td>
<td>DBM-321</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
<tr>
<td>2.</td>
<td>Chemical Quality Assurance</td>
<td>DTC-321</td>
<td>3(2+1)</td>
<td>2+2</td>
</tr>
</tbody>
</table>
VII Semester:

Hands-on Training and Experiential Learning: The student will undergo campus training in various departments of college or off campus training in other College of Dairy Technology. Where facility of hand–on training is available.

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hands –on training and experiential learning</td>
<td>25(0+25)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25(0+25)</td>
</tr>
</tbody>
</table>

VIII Semester: In plant training in commercial Dairy Plants.

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>In-Plant training</td>
<td>20(0+20)</td>
</tr>
<tr>
<td>2.</td>
<td>Training Report Evaluation</td>
<td>5(0+5)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25(0+25)</td>
</tr>
</tbody>
</table>

Hands-on Training /Experiential Learning and in-plant training could also be organised in III year.

Total Credits.

1. Course credit up to (VIth Semester) : 141
2. Hands on training (VIth Semester) : 25
3. In –plant training and report and evaluation (VIIIth Semester): 25

Hand-on Training and experiential Learning: A minimum of two areas for creating infrastructural facilities for Hand-on Training and experiential has been proposed by each university as detailed below. The areas of specialization opted by colleges is decided upon local needs and industrial demand.
3.6 DAIRY TECHNOLOGY

1. Dairy Engineering: 3(2+1)

Practical: To study: S.S Pipes and fitting gasket materials and S.S Milk pumps: Milk tanker and milk storage tanks: Can washer and bottles washer CIP Cleaning equipments:

2. Dairy Process Engineering: 3(2+1)

Practical : Study of constructions and operations of : Vacuum Pan: Double effect evaporator : Spray dryer : Vacuum and atmospheric drum dryers . Study and operation of butter ,Ghee ,Ice-cream and cheese making equipments . Study the Reverse Osmosis and Ultra filtration system: Design problems on double effect evaporator and Vacuum pan. Visit to a milk product plant.

3. **Dairy Plant Design and Layout**

Practical : Building symbols and convention layouts for small , medium and large size dairies . Isometric presentation of piping. Design and layout of Milk collection/chilling centre : fluid milk plant (small, medium and large): Single products dairy (i) Cheese. (ii) Ice-cream (iii)butter and (iv) ghee , composite dairy plant.

4. **Instrumentation and Process Control:**

different parts and their working of single phase induction type watt-hour meter. Visit to a microprocessor controlled dairy plant.

5. Engineering Drawing: 2(0+2)

6. Principles Of Dairy Machine Design 3(2+1)

7. Workshop Practice 2(1+1)

Introduction to workshop practice. safety. care and plTcatltons in workshop. Wood work in tools and their lise, Carpil'nty and pattern making. Monld material and their applicatior-. Heat treatment processes: hardening. tempering. annL’alleng, normalizing etc Metal cutting. Soldering & Brazing. l.ectric arc welding. Gas smithy and forging operations
tools and equipment, the bench: flat surface filing, Chipping, Scraping, Marketing out. Drilling and screwing use of jigs and fixtures in production introduction to following machine tools: (a) Lathe (b) Milling machine (c) Shaper and planer (d) Drilling and boring machines (e) Grinder (f) CNC machines

8. Fluid Mechanics

9. Heat & Mass Transfer

10. Thermodynamics

11. Refrigeration & Air Conditioning

Practical: Study of tools used in installation of a refrigeration plant including charging and detection of leaks. To study different parts and learn operation of bulk milk cooler. Study of different parts and learn the operation of a refrigeration plant/ice plant using ammonia refrigerant. Study of different parts and learn the operation of a vapour absorption refrigeration plant. Dismantling and assemble an open compressor and a sealed unit. Study different parts.
and controls of the following (a) Refrigerator (b) Water cooler (c) Deep Freezer (d) compare their cooling coils and other systems. To find out the rating (cooling rate) at different suction (temperature differences) and air handling capacity of the air cooling unit. Plotting the practical refrigeration cycle on a pressure enthalpy diagram and to compare it with a theoretical refrigeration cycle. Study different parts and operation of a (a) Air washer. (b) Room cooler (c) Air conditioner. (d) Chemical dehumidifiers. (e) Cooling. Plotting of psychrometric process Sensible heating & cooling. Dehumidification & cooling and heating & humidification. Study of different humidity indicating, recording and controlling devices. Problems on cold storage. Visit to cold storage.

12. Electrical Engineering

Practical: Study of voltage resonance in L.C.R. circuits at constant frequency; (a) Star connection- study of voltage and current relation (b) Delta connection-study of voltage and current relation. Measurement of power in 3-phase circuit; (a) For balanced loads (b) For unbalanced loads. by wattmeter and energy meters. Polarity test, no-load test. efficiency and regulation test of single phase. Voltage and current relation in a 3-phase transformer of various kinds or primary and secondary connection system. Starting of induction motor by the following starters: (i) D.O.I. (ii) Manual start delta (iii) Automatic start delta (iv) Manual auto-transformer. Starting or slip-ring, induction motor by normal and automatic rotor starters Test on 3-phase induction motor. Determination of efficiency line current current speed, slip,
power factor at various outputs. Determination relation between the induced armature voltage and Speed of separately excited D.C. generator. Magnetization characteristic or D.C. generator. study the starter connection and starting reversing and adjusting speed of a D.C. motor. study of various measuring instruments.

13. Food Engineering 4(3+1)

2. DAIRY MICROBIOLOGY

1. Fundamentals of Microbiology 3(2+1)

Microbiology: history and scope; contributions of Leeuwenhoek, Pasteur and Koch. Principie microbiology: Light Microscopy (Bright field-dark field. phase contrast, fluorescence); preparation and staining of specimens; electron microscopy. Microbial taxonomy: principles; numerical taxonomy; major characteristics used in taxonomy; classification according to bergey's manual of systematic bacteriology. Structure and functions of prokaryotic cells; Difference between prokaryotics and eukaryotes, Microbial growth and nutrition: the growth curve factors affecting growth of micro organisms. estimation of bacterial growth; bctriostatic and bactericidal agents; the common nutrient requirements and nutritional types of microrganisms. Bacterial genetics: DNA as the genetic material: structure of DNA: bactarial nutations (spontaneous and induced); genet ic recombi nation- (transformation. transduction, conjugation). Microflora of air. soil and water: methods lor controlling microrganisms in air; water as carrier of pathogens.

Practical: General instruction for microbiological laboratory. Microscope- simple and compound Microbiological equipments; autoclave, hot air oven. incubator,centrifug.colorimeter, laminar airflow. membrane filter. Simple "staining-methylene blue;" crystal violate negative staining. Differential staining (Gram. spore. acid fast). Mortality of

2. Introductory Dairy Microbiology 3(2+1)

Hygienic milk production system: microbial quality of milk produced under organized v/s unorganized milk sector in India and comparison with developed countries: microbial and non-microbial contaminants; their sources and entry points in milk during various stages of production; Good Hygiene Practices (GHP) during milk production operations. Microorganisms associated with raw milk; morphological and biochemical characteristics of important groups and their classification: significance of different groups of bacteria i.e. psychrotrophs, mesophiles, thermodurics, and thermophiles in milk. Microbiological changes in bulk refrigerated raw milk; Impact of various stages like milking, chilling, storage and transportation on microbial quality of milk with special reference to psychrotrophic organisms. Direct and indirect rapid technique for assessment of microbial quality of milk. Role of microorganisms in spoilage of milk: souring, curdling, bitter cream, proteolysis, lipolysis; abnormal flavors and discoloration. Mastitis milk: Processing and public health significance, organisms causing mastitis, somatic cells secreted in milk; detection of somatic cell count (Sec) and organisms causing mastitis in milk. Milk as a vehicle of pathogens: food infection, intoxication and toxic infection caused by milk borne pathogens like E. coli, salmonella typhi, Staph aureus, Bacillus cereus etc. Antimicrobial substances in milk: Immunoglobulin, lactoferrin, lysozymes, L.P system etc.

3. Food and Industrial Microbiology 3(2+1)

Microbiology: Basic aspects and scope of food microbiology. Intrinsic and extrinsic Factors that affect microbial growth

Alcohol from molasses and whey by yeasts. Production of fermented whey beverages. Educational tour to food processing/ fermentation industries.

4. Starter Cultures And Fermented Milk Products

Introduction of starter cultures & their importance in dairy industry. Classification of Lactic acid bacteria. Metabolism of Lactic Acid Bacteria and diacetyl production, production of anti bacterial substances by lactic starter cultures. Mixed and define strain starter culture; propagation of starter cultures; factors affecting their propagation; starter concentrates- direct bulk and direct vat starter cultures; starter distillates. Quality and activity of starter cultures: defects in starters and their control; starter failures; antibiotic residues, sanitizers and Bacteriophages. Preservation of starter cultures: freezing and freeze-drying; factors affecting the survival of cultures during preservation. Role of starter cultures in the preparation of various fermented milks; classification of fermented milks. Microbiology of dahi and yoghurt: Different types of dahi and yoghurt; preparation; defects and their control. Microbiology of Milk products: their nutritional and therapeutic significance. Kefir and Kumiss: origin and characteristics. Microbiology of Kefir grains. Microbiology of other fermented milks such as bugarian milk, cultured buttermilk, Leben and Yakult their significance. Concept of probiotic starters and their application in pro biotic dairy food.

5. Dairy Biotechnology

6. Quality and Safety Monitoring in dairy Industries

Current awareness on quality and safety of dairy foods: consumer awareness and their demand for safe foods: role of codex alimentarious commission (CAC) in harmonization or International standards: quality (ISO 9001:2000) and food safety (HACCP) system and their application during milk producuon and processing. National and international food regulatory standards -BIS. PFA. ICMSF. IDF etc. their role in the formulation of standards for controlling the quality and safety of dairy toads. Rapid assessment of dairy food for Microbiological and non-microbial contaminants; Enumeration Principles in detection of predominant spoilage organisms and pathogens like indicator organisms. E.coli, salmonella. Shigella staph aureus. Bacillus cereus and non-microbial contaminants like antibiotic residues aflatoxin. pesticides other inhibitors etc from dairy foods and their control measures. Microbial quality of water and
environmental hygiene in dairy plant; chlorination of dairy water supply. quality of air. Personnel hygiene. treatment and disposal of waste water and effluents: setting up of a microbiological pathogen lab in a dairy plant and its Safety concern.

3. DAIRY TECHNOLOGY

1. **Market Milk**

2. Traditional Dairy products

enhancing the shelf life of indigenous milk products including active packaging.

Practical: Preparation of khoa from cow, buffalo and concentrated milk. Analysis of khoa, channa and paneer fix total solids, moisture, fat and acidity. Preparation of kheer. Preparation of chhanna from cow and buffalo milk and mixed milk. Preparation of misti dahi, chhaka and srikhand. Preparation of khoa and chhanna based sweets. Microbiological examinations of traditional dairy products: Khoa, paneer, spore counts, coliform counts, yeast, molds counts etc. Field trip.

3. Fat Reach Dairy Products

4. Chees Technology

5. Ice cream and frozen deserts

History, Development and status of ice cream industry, History. development and status of ice cream industry, Definition. classification and composition or ice cream and other frozen desert stabilizers and emulsifiers-their classification, properties and role in quality of ice cream technological aspects of ice cream manufacture, Thermodynamics of freezing and calculation of refrigeration loads, Types of freezers, refrigeration control/instrumentation. Type of freezers refrigeration control/instrumentation, Hygiene, cleaning and sanitation of Icecream plant Effect of process treatments on the physico-chemical properties of ice-cream mixes and Icecream. Processing and freezing of ice-cream mix and control of over run, pakeging, hardening storage and shipping of ice-cream. Defects in ice cream, their causes and prevention Physico-chemical properties of ice-cream and compositional

6. Condenced And Dried Milk

PRACTICAL:- Manufacture of plain skim concentrated milk. Chemicals and microbiological examination of concentrated and dried milks for (a) Moisture, T.S., Fat lactose, sucrose, bulk density solubility index, and (b) SPC, coliforms, yeasts and molds, toxins etc. Manufacture of SCM, Manufacture of EM, Concentration of milk by membrane processing, Manufacturing of SMP by spray drying/roller drying. Manufacture of instant milk powder.
7. By Product Technology

8. Judging Of Dairy Products

Consumer acceptance studies Objectives. Methods, types or questionnaires. development of questionnaires parison of laboratory testing and Consumers studies, limitations. "interrelationship between sensory properties of dairy products and various instrumental and physico-chemical tests. Preparation of milk and milk products with defects, techniques for simulation.

9. Food Technology – 1

Status of food processing industries in India and abroad, magnitude and inter- dependence of dairy and food industry. prospects for future growth in India. Harvesting, transportation and storage of food and vegetables. Post harvest processing of fruits and vegetables. Peeling. Sizing blanching, Canning of fruits and vegetables. Drying and freezing of fruits and vegetables, juice processing- General steps in juice processing, role of enzymes in fruit. Juice Extraction, equipments and methods of fruit juice extraction, preservation of fruit juices. Fruit juice clarification. concentration. of fruit juices, fruit juice powders. Fruit juice processing orange and tangerine. Lemon and lime juice. Apple juice. Grape
juice, Nectars, puly juices, tropical blends, Vegetable juices. Jam, Jelly, Marmalade. Pectin: Chemistry & technology

10. Packaging Of Dairy Products

11. Dairy Plant Management And Pollution Control

12. Food Technology II

Slaughterhouse sanitation, meat hygiene and zoonotic diseases, Processing of poultry meat. Egg and egg products processing of albumen, yolk and whole egg, drying and freezing of egg, quality assessment of egg. Types. handling, transportation and marketing of fish, Preservation of fish. Manufacturing turing process of fish protein concentrate, fish sausages. dehydrated fish and fish pickles Cleaning and sanitation, Waste management of food processing plants.

4. DAIRY CHEMISTRY

1. Physical Chemistry of Milk

of electro magnetic radiation, the laws of Lambert and Beer. visible. and ultra-violet Spectroscope. Mention of mass.

NM R spectroscopy.

2. **Chemistry of Milk**

of phosphorus and calcium in milk. Determination or chloride in milk. Determination of temporary and permanent hardness of water estimate of available chlorine from bleaching powder

3. Chemical Quality Assurance

PRACTICAL: Calibration of dairy glassware such as pipette, burette, volumetric flasks, hydrometer, butyrometers. Preparation and standardization of dairy reagents such as acids, alkalies, sodium thiosulfate, silver nitrate, Fehlings, I:II:TA solutions etc. Detection of adulterants, preservatives, and neutralizers in milk and milk products. Chemical analysis of permissible additives used in milk and milk products. Chemical analysis or detergents and sanitizers. Preparation and testing of Gerber sulfuric acid used in kcrmination. Testing the amyl alcohol used for fill determination. Analysis or market samples of milk and milk products.

4. Food Chemistry

5. Biochemistry & Human Nutrition 3(2+1)

Human Nutrition. Theory and definition, Scope of Nutrition: Function, of the various nutrients in body. Digestion, absorption and assimilation of nutrients. Comparative requirements and nutritional requirement of different age groups. (WHO and IeMR standard) Methods of evaluation of nutritive value of foods. Nutritional value of cow, buffalo,

6. Organic Chemistry

5. DAIRY BUSINESS MANAGEMENT

1. Economic Analysis

Basic concepts-wants, goods, wealth. utility, consumption. demand and supply, Consumer behaviour-law of diminishing marginal utility and equi-marginal utility, cardinal and ordinal utility approach, for consumer’s behaviors. Theory of demand-law of demand; demand schedule, demand function, determinates of demand. individual consumer demand and market demand, demand forecasting, elasticity of demand. price elasticity, income elasticity and cross elasticity, Consumer’s surplus. Theory of production- concepts of firm and industry, basic factors of production and their role, production function for a single product. nature of production function, laws of returns. Concepts of costs-fixed and variable costs, short run and long run costs, average and marginal costs, economics and diseconomies of scale. Concept of market- types of market, pricing and output under different market situations, market price and normal price, price determination under perfect Competition. monopoly, oligopoly and monopolistic competition. National income.- GOP. GNP, NNP. disposable personal Income, per capita income. inflation. Iconomic features and characteristics of dairy sector in India. Dairy development strategy with special emphasis in post- independence era and Operation Flood Programme

2. Financial Management And Cost Accounting

3. Operation Research 2(2+0)

4. Industrial Statistics 3(2+1)

Definition and scope; sources of animal husbandry and dairy statistic. Measures of central tendency, Measures of

5. **Marketing Management and International Trade**

6. **Communication Skills and Entrepreneurship Development**

2 (1+1)

PRACTICAL: Listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, precis writing, summarizing. abstracting; individual and group presentations.

7. IT in Dairy Industry 2(1+ 1)

PRACTICAL: Applications of MS Excel to solve the problems of dairy technology: Statistical quality control, Sensory evaluation of food. Chemical kinetics in dairy processing. Use of word processing software for creating reports and presentation. Familiarization with the application of computer in dairy industries: Milk plant Dairy units. Fruit & Vegetable processing unit. Familiarization with software related to dairy industry. Visit to Industry and knowledge of computer application in the same

8. Dairy Extension Education 2(1+ 1)

History, need definition. philosophy. principles. approaches and objectives of extension education, Present status of extension and rural Development programmes. Teaching/learning process, Extension Teaching Methods,

9. Environmental Studies

10. Milk Production Management & Dairy Development

11. Computer Programming 3 (1+2)

Problem solving with computers. flowchart and algorithm development. Data types variables. constants, arithmetic and logical expressions, input/output statements. conditional statements. control structures, arrays. functions, structures, unions.

Practical: Understand different Components of Computer System. Write a C program to calculate volume of a prism having trapezoidal base. Write a program. which can input a positive integer «= l 00000(0) and print it in reverse order. For example 1)875674 to 4765789. Write a program to calculate sum of squares of’ all odd integers between 17
to 335. Exclude integers divisible by 7. Ohm's law is $I = \frac{V}{R}$. Write a program to calculate I for given V and R.

Write a program to generate the Cartesian coordinates or points (x, y) for the values of t ranging from 0.5, 10, 15 to 30. t.>0. Title and label the output. Write a program to calculate the resultant focal length f when f_1 and f_2 are placed in contact. Used formula is $f = \frac{(f_1 + f_2)}{(f_1 \times f_2)}$. Compute for the following pairs of local lengths: $f_1 = 0.7$, 10; $f_2 = 0.5$, 0.4.

Write a program to sort an array of N elements in ascending order.

Write a program to evaluate the following series to calculate $\cos x$

$$\cos x = \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} + \ldots$$

Compare the calculated value with the one by using library function. Write a program which reads in indefinite number of $Name$, $Marks_1$, $Marks_2$, $Marks_3$ from keyboard and store them in a file along with total marks, Percentage marks and Grade in a file.